Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Researchers often have expectations about the relations between means of different groups or standardized regression coefficients; using informative hypothesis testing to incorporate these expectations into the analysis through order constraints increases statistical power Vanbrabant and Rosseel (2020) <doi:10.4324/9780429273872-14>. Another valuable tool, the Bayes factor, can evaluate evidence for multiple hypotheses without concerns about multiple testing, and can be used in Bayesian updating Hoijtink, Mulder, van Lissa & Gu (2019) <doi:10.1037/met0000201>. The bain R package enables informative hypothesis testing using the Bayes factor. The mmibain package provides shiny web applications based on bain'. The RepliCrisis() function launches a shiny card game to simulate the evaluation of replication studies while the mmibain() function launches a shiny application to fit Bayesian informative hypotheses evaluation models from bain'.
This package provides a facility to generate various classes of fractional designs for order-of-addition experiments namely fractional order-of-additions orthogonal arrays, see Voelkel, Joseph G. (2019). "The design of order-of-addition experiments." Journal of Quality Technology 51:3, 230-241, <doi:10.1080/00224065.2019.1569958>. Provides facility to construct component orthogonal arrays, see Jian-Feng Yang, Fasheng Sun and Hongquan Xu (2020). "A Component Position Model, Analysis and Design for Order-of-Addition Experiments." Technometrics, <doi:10.1080/00401706.2020.1764394>. Supports generation of fractional designs for order-of-addition mixture experiments. Analysis of data from order-of-addition mixture experiments is also supported.
This package provides a latent variable model based on factor analytic and mixture of experts models, designed to infer food intake from multiple biomarkers data. The model is framed within a Bayesian hierarchical framework, which provides flexibility to adapt to different biomarker distributions and facilitates inference on food intake from biomarker data alone, along with the associated uncertainty. Details are in D'Angelo, et al. (2020) <arXiv:2006.02995>.
Tokenize text into morphemes. The morphemepiece algorithm uses a lookup table to determine the morpheme breakdown of words, and falls back on a modified wordpiece tokenization algorithm for words not found in the lookup table.
This package provides a toolbox to handle and represent trophic networks in space or time across aggregation levels. This package contains a layout algorithm specifically designed for trophic networks, using dimension reduction on a diffusion graph kernel and trophic levels. Importantly, this package provides a layout method applicable for large trophic networks.
Fit multilevel manifest or latent time-series models, including popular Dynamic Structural Equation Models (DSEM). The models can be set up and modified with user-friendly functions and are fit to the data using Stan for Bayesian inference. Path models and formulas for user-defined models can be easily created with functions using knitr'. Asparouhov, Hamaker, & Muthen (2018) <doi:10.1080/10705511.2017.1406803>.
Grey model is commonly used in time series forecasting when statistical assumptions are violated with a limited number of data points. The minimum number of data points required to fit a grey model is four observations. This package fits Grey model of First order and One Variable, i.e., GM (1,1) for multivariate time series data and returns the parameters of the model, model evaluation criteria and h-step ahead forecast values for each of the time series variables. For method details see, Akay, D. and Atak, M. (2007) <DOI:10.1016/j.energy.2006.11.014>, Hsu, L. and Wang, C. (2007).<DOI:10.1016/j.techfore.2006.02.005>.
High-dimensional data integration is a critical but difficult problem in genomics research because of potential biases from high-throughput experiments. We present MANCIE, a computational method for integrating two genomic data sets with homogenous dimensions from different sources based on a PCA procedure as an approximation to a Bayesian approach.
Package for estimating, analyzing, and forecasting multi-country macro-finance affine term structure models (ATSMs). All setups build on the single-country unspanned macroeconomic risk framework from Joslin, Priebsch, and Singleton (2014, JF) <doi:10.1111/jofi.12131>. Multicountry extensions by Jotikasthira, Le, and Lundblad (2015, JFE) <doi:10.1016/j.jfineco.2014.09.004>, Candelon and Moura (2023, EM) <doi:10.1016/j.econmod.2023.106453>, and Candelon and Moura (2024, JFEC) <doi:10.1093/jjfinec/nbae008> are also available. The package also provides tools for bias correction as in Bauer Rudebusch and Wu (2012, JBES) <doi:10.1080/07350015.2012.693855>, bootstrap analysis, and several graphical/numerical outputs.
This package provides a collection of functions for conducting a meta-analysis with mean differences data. It uses recommended procedures as described in The Handbook of Research Synthesis and Meta-Analysis (Cooper, Hedges, & Valentine, 2009).
The target of margaret is help to extract data from Minciencias to analyze scientific production in Colombia.
This package provides a causal mediation framework for single-cell data that incorporates two key features ('MedZIsc', pronounced Magics): (1) zero-inflation using beta regression and (2) overdispersed expression counts using negative binomial regression. This approach also includes a screening step based on penalized and marginal models to handle high-dimensionality. Full methodological details are available in our recent preprint by Ahn S and Li Z (2025) <doi:10.48550/arXiv.2505.22986>.
Selecting the optimal multidimensional scaling (MDS) procedure for metric data via metric MDS (ratio, interval, mspline) and nonmetric MDS (ordinal). Selecting the optimal multidimensional scaling (MDS) procedure for interval-valued data via metric MDS (ratio, interval, mspline).Selecting the optimal multidimensional scaling procedure for interval-valued data by varying all combinations of normalization and optimization methods.Selecting the optimal MDS procedure for statistical data referring to the evaluation of tourist attractiveness of Lower Silesian counties. (Borg, I., Groenen, P.J.F., Mair, P. (2013) <doi:10.1007/978-3-642-31848-1>, Walesiak, M. (2016) <doi:10.15611/ekt.2016.2.01>, Walesiak, M. (2017) <doi:10.15611/ekt.2017.3.01>).
Estimates average treatment effects using model average double robust (MA-DR) estimation. The MA-DR estimator is defined as weighted average of double robust estimators, where each double robust estimator corresponds to a specific choice of the outcome model and the propensity score model. The MA-DR estimator extend the desirable double robustness property by achieving consistency under the much weaker assumption that either the true propensity score model or the true outcome model be within a specified, possibly large, class of models.
This package provides a simple and trustworthy methodology for the analysis of misreported continuous time series. See Moriña, D, Fernández-Fontelo, A, Cabaña, A, Puig P. (2021) <arXiv:2003.09202v2>.
For a given test market find the best control markets using time series matching and analyze the impact of an intervention. The intervention could be a marketing event or some other local business tactic that is being tested. The workflow implemented in the Market Matching package utilizes dynamic time warping (the dtw package) to do the matching and the CausalImpact package to analyze the causal impact. In fact, this package can be considered a "workflow wrapper" for those two packages. In addition, if you don't have a chosen set of test markets to match, the Market Matching package can provide suggested test/control market pairs and pseudo prospective power analysis (measuring causal impact at fake interventions).
An RStudio Addin wrapper for the mergen package. This package employs artificial intelligence to convert data analysis questions into executable code, explanations, and algorithms. This package makes it easier to use Large Language Models in your development environment by providing a chat-like interface, while also allowing you to inspect and execute the returned code.
The effects of the site may severely bias the accuracy of a multisite machine-learning model, even if the analysts removed them when fitting the model in the training set and applying the model in the test set (Solanes et al., Neuroimage 2023, 265:119800). This simple R package estimates the accuracy of a multisite machine-learning model unbiasedly, as described in (Solanes et al., Psychiatry Research: Neuroimaging 2021, 314:111313). It currently supports the estimation of sensitivity, specificity, balanced accuracy (for binary or multinomial variables), the area under the curve, correlation, mean squarer error, and hazard ratio for binomial, multinomial, gaussian, and survival (time-to-event) outcomes.
Model time series using mixture autoregressive (MAR) models. Implemented are frequentist (EM) and Bayesian methods for estimation, prediction and model evaluation. See Wong and Li (2002) <doi:10.1111/1467-9868.00222>, Boshnakov (2009) <doi:10.1016/j.spl.2009.04.009>), and the extensive references in the documentation.
Calculation of signed root deviance profiles for linear combinations of parameters in a generalized linear model. Multiple tests and simultaneous confidence intervals are provided.
Import bathymetric and hypsometric data from the NOAA (National Oceanic and Atmospheric Administration, <https://www.ncei.noaa.gov/products/etopo-global-relief-model>), GEBCO (General Bathymetric Chart of the Oceans, <https://www.gebco.net>) and other sources, plot xyz data to prepare publication-ready figures, analyze xyz data to extract transects, get depth / altitude based on geographical coordinates, or calculate z-constrained least-cost paths.
This package provides functions to estimate weather variables at any position of a landscape [De Caceres et al. (2018) <doi:10.1016/j.envsoft.2018.08.003>].
This package provides a tool for optimizing scales of effect when modeling ecological processes in space. Specifically, the scale parameter of a distance-weighted kernel distribution is identified for all environmental layers included in the model. Includes functions to assist in model selection, model evaluation, efficient transformation of raster surfaces using fast Fourier transformation, and projecting models. For more details see Peterman (2025) <doi:10.21203/rs.3.rs-7246115/v1>.
This package implements the multivariate adaptive shrinkage (mash) method of Urbut et al (2019) <DOI:10.1038/s41588-018-0268-8> for estimating and testing large numbers of effects in many conditions (or many outcomes). Mash takes an empirical Bayes approach to testing and effect estimation; it estimates patterns of similarity among conditions, then exploits these patterns to improve accuracy of the effect estimates. The core linear algebra is implemented in C++ for fast model fitting and posterior computation.