Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
NanoTube includes functions for the processing, quality control, analysis, and visualization of NanoString nCounter data. Analysis functions include differential analysis and gene set analysis methods, as well as postprocessing steps to help understand the results. Additional functions are included to enable interoperability with other Bioconductor NanoString data analysis packages.
ncRNAtools provides a set of basic tools for handling and analyzing non-coding RNAs. These include tools to access the RNAcentral database and to predict and visualize the secondary structure of non-coding RNAs. The package also provides tools to read, write and interconvert the file formats most commonly used for representing such secondary structures.
This package contains the weights from pre-trained shallow sparsely-connected autoencoders. This data is required for getting the gene set scores with NetActivity package.
Modular package for generation of sets of ranges representing the null hypothesis. These can take the form of bootstrap samples of ranges (using the block bootstrap framework of Bickel et al 2010), or sets of control ranges that are matched across one or more covariates. nullranges is designed to be inter-operable with other packages for analysis of genomic overlap enrichment, including the plyranges Bioconductor package.
Boosting supported network analysis for high-dimensional omics applications.
NuPoP is an R package for Nucleosome Positioning Prediction.This package is built upon a duration hidden Markov model proposed in Xi et al, 2010; Wang et al, 2008. The core of the package was written in Fotran. In addition to the R package, a stand-alone Fortran software tool is also available at https://github.com/jipingw. The Fortran codes have complete functonality as the R package. Note: NuPoP has two separate functions for prediction of nucleosome positioning, one for MNase-map trained models and the other for chemical map-trained models. The latter was implemented for four species including yeast, S.pombe, mouse and human, trained based on our recent publications. We noticed there is another package nuCpos by another group for prediction of nucleosome positioning trained with chemicals. A report to compare recent versions of NuPoP with nuCpos can be found at https://github.com/jiping/NuPoP_doc. Some more information can be found and will be posted at https://github.com/jipingw/NuPoP.
# NetActivity enables to compute gene set scores from previously trained sparsely-connected autoencoders. The package contains a function to prepare the data (`prepareSummarizedExperiment`) and a function to compute the gene set scores (`computeGeneSetScores`). The package `NetActivityData` contains different pre-trained models to be directly applied to the data. Alternatively, the users might use the package to compute gene set scores using custom models.
Takes as input an incomplete perturbation profile and differential gene expression in log odds and infers unobserved perturbations and augments observed ones. The inference is done by iteratively inferring a network from the perturbations and inferring perturbations from the network. The network inference is done by Nested Effects Models.
The NanoporeRNASeq package contains long read RNA-Seq data generated using Oxford Nanopore Sequencing. The data consists of 6 samples from two human cell lines (K562 and MCF7) that were generated by the SG-NEx project. Each of these cell lines has three replicates, with 1 direct RNA sequencing data and 2 cDNA sequencing data. Reads are aligned to chromosome 22 (Grch38) and stored as bam files. The original data is from the SG-NEx project.
This package can generate a synthetic map with reads covering the nucleosome regions as well as a synthetic map with forward and reverse reads emulating next-generation sequencing. The synthetic hybridization data of “Tiling Arrays” can also be generated. The user has choice between three different distributions for the read positioning: Normal, Student and Uniform. In addition, a visualization tool is provided to explore the synthetic nucleosome maps.
This package provides various methods to load the pathways from the NCI Pathways Database in R graph objects and to re-format them.
This package provides a package containing an environment representing the NuGO_Hs1a520180.cdf file.
This package provides methods to model and impute non-detects in the results of qPCR experiments.
This package provides methods and object classes for parsing FastQC reports and output summaries from other NGS tools into R. As well as parsing files, multiple plotting methods have been implemented for visualising the parsed data. Plots can be generated as static ggplot objects or interactive plotly objects.
This package predicts the gene-gene interaction network and identifies the direct transcriptional targets of the perturbation using an ODE (Ordinary Differential Equation) based method.
This package provides a package containing an environment representing the NuGO_Mm1a520177.cdf file.
While some non-coding RNAs (ncRNAs) are assigned critical regulatory roles, most remain functionally uncharacterized. This presents a challenge whenever an interesting set of ncRNAs needs to be analyzed in a functional context. Transcripts located close-by on the genome are often regulated together. This genomic proximity on the sequence can hint to a functional association. We present a tool, NoRCE, that performs cis enrichment analysis for a given set of ncRNAs. Enrichment is carried out using the functional annotations of the coding genes located proximal to the input ncRNAs. Other biologically relevant information such as topologically associating domain (TAD) boundaries, co-expression patterns, and miRNA target prediction information can be incorporated to conduct a richer enrichment analysis. To this end, NoRCE includes several relevant datasets as part of its data repository, including cell-line specific TAD boundaries, functional gene sets, and expression data for coding & ncRNAs specific to cancer. Additionally, the users can utilize custom data files in their investigation. Enrichment results can be retrieved in a tabular format or visualized in several different ways. NoRCE is currently available for the following species: human, mouse, rat, zebrafish, fruit fly, worm, and yeast.
Nucleosome positioning for Tiling Arrays and NGS experiments.
High-throughput sequencing experiments followed by differential expression analysis is a widely used approach to detect genomic biomarkers. A fundamental step in differential expression analysis is to model the association between gene counts and covariates of interest. NBAMSeq a flexible statistical model based on the generalized additive model and allows for information sharing across genes in variance estimation.
Current gene set enrichment methods rely upon permutations for inference. These approaches are computationally expensive and have minimum achievable p-values based on the number of permutations, not on the actual observed statistics. We have derived three parametric approximations to the permutation distributions of two gene set enrichment test statistics. We are able to reduce the computational burden and granularity issues of permutation testing with our method, which is implemented in this package. npGSEA calculates gene set enrichment statistics and p-values without the computational cost of permutations. It is applicable in settings where one or many gene sets are of interest. There are also built-in plotting functions to help users visualize results.
nuCpos, a derivative of NuPoP, is an R package for prediction of nucleosome positions. nuCpos calculates local and whole nucleosomal histone binding affinity (HBA) scores for a given 147-bp sequence. Note: This package was designed to demonstrate the use of chemical maps in prediction. As the parental package NuPoP now provides chemical-map-based prediction, the function for dHMM-based prediction was removed from this package. nuCpos continues to provide functions for HBA calculation.
Genome wide annotation for Canine, primarily based on mapping using Entrez Gene identifiers.
Optimal-transport techniques applied to supervised flow cytometry gating.
Genome wide annotation for Rhesus, primarily based on mapping using Entrez Gene identifiers.