_            _    _        _         _
      /\ \         /\ \ /\ \     /\_\      / /\
      \_\ \       /  \ \\ \ \   / / /     / /  \
      /\__ \     / /\ \ \\ \ \_/ / /     / / /\ \__
     / /_ \ \   / / /\ \ \\ \___/ /     / / /\ \___\
    / / /\ \ \ / / /  \ \_\\ \ \_/      \ \ \ \/___/
   / / /  \/_// / /   / / / \ \ \        \ \ \
  / / /      / / /   / / /   \ \ \   _    \ \ \
 / / /      / / /___/ / /     \ \ \ /_/\__/ / /
/_/ /      / / /____\/ /       \ \_\\ \/___/ /
\_\/       \/_________/         \/_/ \_____\/

Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.

API method:

GET /api/packages?search=hello&page=1&limit=20

where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned in response headers.

If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.


r-grpslope 0.3.4
Propagated dependencies: r-rcpp@1.1.0
Channel: guix-cran
Location: guix-cran/packages/g.scm (guix-cran packages g)
Home page: https://github.com/agisga/grpSLOPE
Licenses: GPL 3
Build system: r
Synopsis: Group Sorted L1 Penalized Estimation
Description:

Group SLOPE (Group Sorted L1 Penalized Estimation) is a penalized linear regression method that is used for adaptive selection of groups of significant predictors in a high-dimensional linear model. The Group SLOPE method can control the (group) false discovery rate at a user-specified level (i.e., control the expected proportion of irrelevant among all selected groups of predictors). For additional information about the implemented methods please see Brzyski, Gossmann, Su, Bogdan (2018) <doi:10.1080/01621459.2017.1411269>.

r-granovagg 1.4.1
Propagated dependencies: r-tidyr@1.3.1 r-tibble@3.3.0 r-rcolorbrewer@1.1-3 r-magrittr@2.0.4 r-ggplot2@4.0.1 r-dplyr@1.1.4
Channel: guix-cran
Location: guix-cran/packages/g.scm (guix-cran packages g)
Home page: https://github.com/briandk/granovaGG
Licenses: Expat
Build system: r
Synopsis: Graphical Analysis of Variance Using ggplot2
Description:

Create what we call Elemental Graphics for display of anova results. The term elemental derives from the fact that each function is aimed at construction of graphical displays that afford direct visualizations of data with respect to the fundamental questions that drive the particular anova methods. This package represents a modification of the original granova package; the key change is to use ggplot2', Hadley Wickham's package based on Grammar of Graphics concepts (due to Wilkinson). The main function is granovagg.1w() (a graphic for one way ANOVA); two other functions (granovagg.ds() and granovagg.contr()) are to construct graphics for dependent sample analyses and contrast-based analyses respectively. (The function granova.2w(), which entails dynamic displays of data, is not currently part of granovaGG'.) The granovaGG functions are to display data for any number of groups, regardless of their sizes (however, very large data sets or numbers of groups can be problematic). For granovagg.1w() a specialized approach is used to construct data-based contrast vectors for which anova data are displayed. The result is that the graphics use a straight line to facilitate clear interpretations while being faithful to the standard effect test in anova. The graphic results are complementary to standard summary tables; indeed, numerical summary statistics are provided as side effects of the graphic constructions. granovagg.ds() and granovagg.contr() provide graphic displays and numerical outputs for a dependent sample and contrast-based analyses. The graphics based on these functions can be especially helpful for learning how the respective methods work to answer the basic question(s) that drive the analyses. This means they can be particularly helpful for students and non-statistician analysts. But these methods can be of assistance for work-a-day applications of many kinds, as they can help to identify outliers, clusters or patterns, as well as highlight the role of non-linear transformations of data. In the case of granovagg.1w() and granovagg.ds() several arguments are provided to facilitate flexibility in the construction of graphics that accommodate diverse features of data, according to their corresponding display requirements. See the help files for individual functions.

r-gdpc 1.1.4
Propagated dependencies: r-zoo@1.8-14 r-xts@0.14.1 r-rcpparmadillo@15.2.2-1 r-rcpp@1.1.0 r-foreach@1.5.2 r-doparallel@1.0.17
Channel: guix-cran
Location: guix-cran/packages/g.scm (guix-cran packages g)
Home page: https://cran.r-project.org/package=gdpc
Licenses: GPL 2+
Build system: r
Synopsis: Generalized Dynamic Principal Components
Description:

This package provides functions to compute the Generalized Dynamic Principal Components introduced in Peña and Yohai (2016) <DOI:10.1080/01621459.2015.1072542>. The implementation includes an automatic procedure proposed in Peña, Smucler and Yohai (2020) <DOI:10.18637/jss.v092.c02> for the identification of both the number of lags to be used in the generalized dynamic principal components as well as the number of components required for a given reconstruction accuracy.

r-gridstacker 0.1.0
Propagated dependencies: r-shinyjs@2.1.0 r-shiny@1.11.1 r-htmltools@0.5.8.1 r-checkmate@2.3.3
Channel: guix-cran
Location: guix-cran/packages/g.scm (guix-cran packages g)
Home page: https://cran.r-project.org/package=gridstackeR
Licenses: GPL 3
Build system: r
Synopsis: Wrapper for 'gridstack.js'
Description:

An easy way to create responsive layouts with just a few lines of code. You can create boxes that are draggable and resizable and load predefined Layouts. The package serves as a wrapper to allow for easy integration of the gridstack.js functionalities <https://github.com/gridstack/gridstack.js>.

r-genmeta 0.2.0
Propagated dependencies: r-pracma@2.4.6 r-matrix@1.7-4 r-mass@7.3-65 r-magic@1.6-1
Channel: guix-cran
Location: guix-cran/packages/g.scm (guix-cran packages g)
Home page: https://cran.r-project.org/package=GENMETA
Licenses: GPL 2+ GPL 3+
Build system: r
Synopsis: Implements Generalized Meta-Analysis Using Iterated Reweighted Least Squares Algorithm
Description:

Generalized meta-analysis is a technique for estimating parameters associated with a multiple regression model through meta-analysis of studies which may have information only on partial sets of the regressors. It estimates the effects of each variable while fully adjusting for all other variables that are measured in at least one of the studies. Using algebraic relationships between regression parameters in different dimensions, a set of moment equations is specified for estimating the parameters of a maximal model through information available on sets of parameter estimates from a series of reduced models available from the different studies. The specification of the equations requires a reference dataset to estimate the joint distribution of the covariates. These equations are solved using the generalized method of moments approach, with the optimal weighting of the equations taking into account uncertainty associated with estimates of the parameters of the reduced models. The proposed framework is implemented using iterated reweighted least squares algorithm for fitting generalized linear regression models. For more details about the method, please see pre-print version of the manuscript on generalized meta-analysis by Prosenjit Kundu, Runlong Tang and Nilanjan Chatterjee (2018) <doi:10.1093/biomet/asz030>.The current version (0.2.0) is updated to address some of the stability issues in the previous version (0.1).

r-glmnetr 0.6-3
Propagated dependencies: r-xgboost@1.7.11.1 r-torch@0.16.3 r-survival@3.8-3 r-smoof@1.6.0.3 r-rpart@4.1.24 r-randomforestsrc@2.9.3 r-paramhelpers@1.14.2 r-mlrmbo@1.1.5.1 r-matrix@1.7-4 r-glmnet@4.1-10 r-aorsf@0.1.6
Channel: guix-cran
Location: guix-cran/packages/g.scm (guix-cran packages g)
Home page: https://cran.r-project.org/package=glmnetr
Licenses: GPL 3
Build system: r
Synopsis: Nested Cross Validation for the Relaxed Lasso and Other Machine Learning Models
Description:

Cross validation informed Relaxed LASSO (or more generally elastic net), gradient boosting machine ('xgboost'), Random Forest ('RandomForestSRC'), Oblique Random Forest ('aorsf'), Artificial Neural Network (ANN), Recursive Partitioning ('RPART') or step wise regression models are fit. Cross validation leave out samples (leading to nested cross validation) or bootstrap out-of-bag samples are used to evaluate and compare performances between these models with results presented in tabular or graphical means. Calibration plots can also be generated, again based upon (outer nested) cross validation or bootstrap leave out (out of bag) samples. Note, at the time of this writing, in order to fit gradient boosting machine models one must install the packages DiceKriging and rgenoud using the install.packages() function. For some datasets, for example when the design matrix is not of full rank, glmnet may have very long run times when fitting the relaxed lasso model, from our experience when fitting Cox models on data with many predictors and many patients, making it difficult to get solutions from either glmnet() or cv.glmnet(). This may be remedied by using the path=TRUE option when calling glmnet() and cv.glmnet(). Within the glmnetr package the approach of path=TRUE is taken by default. other packages doing similar include nestedcv <https://cran.r-project.org/package=nestedcv>, glmnetSE <https://cran.r-project.org/package=glmnetSE> which may provide different functionality when performing a nested CV. Use of the glmnetr has many similarities to the glmnet package and it could be helpful for the user of glmnetr also become familiar with the glmnet package <https://cran.r-project.org/package=glmnet>, with the "An Introduction to glmnet'" and "The Relaxed Lasso" being especially useful in this regard.

r-g3viz 1.2.0
Propagated dependencies: r-stringr@1.6.0 r-org-hs-eg-db@3.22.0 r-jsonlite@2.0.0 r-httr2@1.2.1 r-htmlwidgets@1.6.4 r-annotationdbi@1.72.0
Channel: guix-cran
Location: guix-cran/packages/g.scm (guix-cran packages g)
Home page: https://github.com/G3viz/g3viz
Licenses: Expat
Build system: r
Synopsis: Interactively Visualize Genetic Mutation Data using a Lollipop-Diagram
Description:

Interface for g3-lollipop JavaScript library. Visualize genetic mutation data using an interactive lollipop diagram in RStudio or your web browser.

r-geoprofiler 0.0.3
Propagated dependencies: r-units@1.0-0 r-terra@1.8-86 r-tectonicr@0.4.8 r-sf@1.0-23 r-dplyr@1.1.4
Channel: guix-cran
Location: guix-cran/packages/g.scm (guix-cran packages g)
Home page: https://tobiste.github.io/geoprofiler/
Licenses: GPL 3+
Build system: r
Synopsis: Perpendicular Line Transects for Geosciences
Description:

Toolset to create perpendicular profile graphs and swath profiles. Method are based on coordinate rotation algorithm by Schaeben et al. (2024) <doi:10.1002/mma.9823>.

r-gamer 0.0.7
Channel: guix-cran
Location: guix-cran/packages/g.scm (guix-cran packages g)
Home page: https://www.constantine-cooke.com/gameR/
Licenses: GPL 3+
Build system: r
Synopsis: Color Palettes Inspired by Video Games
Description:

Palettes based on video games.

r-getspanel 0.2.1
Propagated dependencies: r-mvtnorm@1.3-3 r-matrix@1.7-4 r-ggplot2@4.0.1 r-gets@0.38 r-fastdummies@1.7.5
Channel: guix-cran
Location: guix-cran/packages/g.scm (guix-cran packages g)
Home page: https://github.com/moritzpschwarz/getspanel
Licenses: Expat
Build system: r
Synopsis: General-to-Specific Modelling of Panel Data
Description:

Uses several types of indicator saturation and automated General-to-Specific (GETS) modelling from the gets package and applies it to panel data. This allows the detection of structural breaks in panel data, operationalising a reverse causal approach of causal inference, see Pretis and Schwarz (2022) <doi:10.2139/ssrn.4022745>.

r-gmdhreg 0.2.3
Channel: guix-cran
Location: guix-cran/packages/g.scm (guix-cran packages g)
Home page: https://cran.r-project.org/package=GMDHreg
Licenses: GPL 3
Build system: r
Synopsis: Regression using GMDH Algorithms
Description:

Regression using GMDH algorithms from Prof. Alexey G. Ivakhnenko. Group Method of Data Handling (GMDH), or polynomial neural networks, is a family of inductive algorithms that performs gradually complicated polynomial models and selecting the best solution by an external criterion. In other words, inductive GMDH algorithms give possibility finding automatically interrelations in data, and selecting an optimal structure of model or network. The package includes GMDH Combinatorial, GMDH MIA (Multilayered Iterative Algorithm), GMDH GIA (Generalized Iterative Algorithm) and GMDH Combinatorial with Active Neurons.

r-ghost 0.1.0
Propagated dependencies: r-r6@2.6.1
Channel: guix-cran
Location: guix-cran/packages/g.scm (guix-cran packages g)
Home page: https://www.researchgate.net/publication/332779980_Ghost_Imputation_Accurately_Reconstructing_Missing_Data_of_the_Off_Period
Licenses: GPL 3
Build system: r
Synopsis: Missing Data Segments Imputation in Multivariate Streams
Description:

Helper functions provide an accurate imputation algorithm for reconstructing the missing segment in a multi-variate data streams. Inspired by single-shot learning, it reconstructs the missing segment by identifying the first similar segment in the stream. Nevertheless, there should be one column of data available, i.e. a constraint column. The values of columns can be characters (A, B, C, etc.). The result of the imputed dataset will be returned a .csv file. For more details see Reza Rawassizadeh (2019) <doi:10.1109/TKDE.2019.2914653>.

r-getquandldata 1.0.0
Propagated dependencies: r-readr@2.1.6 r-purrr@1.2.0 r-memoise@2.0.1 r-jsonlite@2.0.0 r-fs@1.6.6 r-dplyr@1.1.4
Channel: guix-cran
Location: guix-cran/packages/g.scm (guix-cran packages g)
Home page: https://github.com/msperlin/GetQuandlData/
Licenses: GPL 2
Build system: r
Synopsis: Fast and Cached Import of Data from 'Quandl' Using the 'json API'
Description:

Imports time series data from the Quandl database <https://data.nasdaq.com/>. The package uses the json api at <https://data.nasdaq.com/search>, local caching ('memoise package) and the tidy format by default. Also allows queries of databases, allowing the user to see which time series are available for each database id. In short, it is an alternative to package Quandl', with faster data importation in the tidy/long format.

r-gwid 0.3.0
Propagated dependencies: r-snprelate@1.44.0 r-shiny@1.11.1 r-rcpproll@0.3.1 r-plotly@4.11.0 r-piggyback@0.1.5 r-matrix@1.7-4 r-lattice@0.22-7 r-ggplot2@4.0.1 r-gdsfmt@1.46.0 r-data-table@1.17.8
Channel: guix-cran
Location: guix-cran/packages/g.scm (guix-cran packages g)
Home page: https://github.com/soroushmdg/gwid
Licenses: Expat
Build system: r
Synopsis: Genome-Wide Identity-by-Descent
Description:

This package provides methods and tools for the analysis of Genome Wide Identity-by-Descent ('gwid') mapping data, focusing on testing whether there is a higher occurrence of Identity-By-Descent (IBD) segments around potential causal variants in cases compared to controls, which is crucial for identifying rare variants. To enhance its analytical power, gwid incorporates a Sliding Window Approach, allowing for the detection and analysis of signals from multiple Single Nucleotide Polymorphisms (SNPs).

r-ggdoubleheat 0.1.3
Propagated dependencies: r-rlang@1.1.6 r-ggplot2@4.0.1 r-ggnewscale@0.5.2
Channel: guix-cran
Location: guix-cran/packages/g.scm (guix-cran packages g)
Home page: https://pursuitofdatascience.github.io/ggDoubleHeat/
Licenses: GPL 3+
Build system: r
Synopsis: Heatmap-Like Visualization Tool
Description:

This package provides a data visualization design that provides comparison between two (Double) data sources (usually on a par with each other) on one reformed heatmap, while inheriting ggplot2 features.

r-googletraffic 0.1.7
Propagated dependencies: r-webshot2@0.1.2 r-stringr@1.6.0 r-sp@2.2-0 r-sf@1.0-23 r-schemr@0.3.1 r-raster@3.6-32 r-png@0.1-8 r-plotwidgets@0.5.1 r-htmlwidgets@1.6.4 r-googleway@2.7.8 r-dplyr@1.1.4 r-colornamer@0.1.0
Channel: guix-cran
Location: guix-cran/packages/g.scm (guix-cran packages g)
Home page: https://dime-worldbank.github.io/googletraffic/
Licenses: Expat
Build system: r
Synopsis: Google Traffic
Description:

Create geographically referenced traffic data from the Google Maps JavaScript API <https://developers.google.com/maps/documentation/javascript/examples/layer-traffic>.

r-genalgo 2.2.1
Propagated dependencies: r-oompabase@3.2.10 r-mass@7.3-65 r-classdiscovery@3.4.9
Channel: guix-cran
Location: guix-cran/packages/g.scm (guix-cran packages g)
Home page: http://oompa.r-forge.r-project.org/
Licenses: ASL 2.0
Build system: r
Synopsis: Classes and Methods to Use Genetic Algorithms for Feature Selection
Description:

Defines classes and methods that can be used to implement genetic algorithms for feature selection. The idea is that we want to select a fixed number of features to combine into a linear classifier that can predict a binary outcome, and can use a genetic algorithm heuristically to select an optimal set of features.

r-glmmpen 1.5.4.8
Propagated dependencies: r-survival@3.8-3 r-stringr@1.6.0 r-stanheaders@2.32.10 r-rstantools@2.5.0 r-rstan@2.32.7 r-reshape2@1.4.5 r-rcppparallel@5.1.11-1 r-rcppeigen@0.3.4.0.2 r-rcpparmadillo@15.2.2-1 r-rcpp@1.1.0 r-ncvreg@3.16.0 r-mvtnorm@1.3-3 r-matrix@1.7-4 r-mass@7.3-65 r-lme4@1.1-37 r-ggplot2@4.0.1 r-bigmemory@4.6.4 r-bh@1.87.0-1
Channel: guix-cran
Location: guix-cran/packages/g.scm (guix-cran packages g)
Home page: https://cran.r-project.org/package=glmmPen
Licenses: GPL 2+
Build system: r
Synopsis: High Dimensional Penalized Generalized Linear Mixed Models (pGLMM)
Description:

Fits high dimensional penalized generalized linear mixed models using the Monte Carlo Expectation Conditional Minimization (MCECM) algorithm. The purpose of the package is to perform variable selection on both the fixed and random effects simultaneously for generalized linear mixed models. The package supports fitting of Binomial, Gaussian, and Poisson data with canonical links, and supports penalization using the MCP, SCAD, or LASSO penalties. The MCECM algorithm is described in Rashid et al. (2020) <doi:10.1080/01621459.2019.1671197>. The techniques used in the minimization portion of the procedure (the M-step) are derived from the procedures of the ncvreg package (Breheny and Huang (2011) <doi:10.1214/10-AOAS388>) and grpreg package (Breheny and Huang (2015) <doi:10.1007/s11222-013-9424-2>), with appropriate modifications to account for the estimation and penalization of the random effects. The ncvreg and grpreg packages also describe the MCP, SCAD, and LASSO penalties.

r-geint 1.1
Propagated dependencies: r-speedglm@0.3-5 r-rje@1.12.1 r-pracma@2.4.6 r-nleqslv@3.3.5 r-mvtnorm@1.3-3 r-geepack@1.3.13 r-bindata@0.9-23
Channel: guix-cran
Location: guix-cran/packages/g.scm (guix-cran packages g)
Home page: https://cran.r-project.org/package=GEint
Licenses: GPL 3
Build system: r
Synopsis: Misspecified Models for Gene-Environment Interaction
Description:

The first major functionality is to compute the bias in regression coefficients of misspecified linear gene-environment interaction models. The most generalized function for this objective is GE_bias(). However GE_bias() requires specification of many higher order moments of covariates in the model. If users are unsure about how to calculate/estimate these higher order moments, it may be easier to use GE_bias_normal_squaredmis(). This function places many more assumptions on the covariates (most notably that they are all jointly generated from a multivariate normal distribution) and is thus able to automatically calculate many of the higher order moments automatically, necessitating only that the user specify some covariances. There are also functions to solve for the bias through simulation and non-linear equation solvers; these can be used to check your work. Second major functionality is to implement the Bootstrap Inference with Correct Sandwich (BICS) testing procedure, which we have found to provide better finite-sample performance than other inference procedures for testing GxE interaction. More details on these functions are available in Sun, Carroll, Christiani, and Lin (2018) <doi:10.1111/biom.12813>.

r-grnn 0.1.0
Channel: guix-cran
Location: guix-cran/packages/g.scm (guix-cran packages g)
Home page: http://flow.chasset.net/r-grnn/
Licenses: FSDG-compatible
Build system: r
Synopsis: General regression neural network
Description:

The program GRNN implements the algorithm proposed by Specht (1991).

r-ghibli 0.3.4
Propagated dependencies: r-prismatic@1.1.2
Channel: guix-cran
Location: guix-cran/packages/g.scm (guix-cran packages g)
Home page: https://ewenme.github.io/ghibli/
Licenses: Expat
Build system: r
Synopsis: Studio Ghibli Colour Palettes
Description:

Colour palettes inspired by Studio Ghibli <https://en.wikipedia.org/wiki/Studio_Ghibli> films, ported to R for your enjoyment.

r-gginference 0.1.3
Propagated dependencies: r-rlang@1.1.6 r-ggplot2@4.0.1
Channel: guix-cran
Location: guix-cran/packages/g.scm (guix-cran packages g)
Home page: https://github.com/okgreece/gginference
Licenses: GPL 2 FSDG-compatible
Build system: r
Synopsis: Visualise the Results of Inferential Statistics using 'ggplot2'
Description:

Visualise the results of F test to compare two variances, Student's t-test, test of equal or given proportions, Pearson's chi-squared test for count data and test for association/correlation between paired samples.

r-grmsem 1.1.0
Propagated dependencies: r-optimparallel@1.0-2 r-numderiv@2016.8-1.1 r-msm@1.8.2
Channel: guix-cran
Location: guix-cran/packages/g.scm (guix-cran packages g)
Home page: https://CRAN.R-project.org/package=grmsem
Licenses: GPL 3
Build system: r
Synopsis: Genetic-Relationship-Matrix Structural Equation Modelling (GRMSEM)
Description:

Quantitative genetics tool supporting the modelling of multivariate genetic variance structures in quantitative data. It allows fitting different models through multivariate genetic-relationship-matrix (GRM) structural equation modelling (SEM) in unrelated individuals, using a maximum likelihood approach. Specifically, it combines genome-wide genotyping information, as captured by GRMs, with twin-research-based SEM techniques, St Pourcain et al. (2017) <doi:10.1016/j.biopsych.2017.09.020>, Shapland et al. (2020) <doi:10.1101/2020.08.14.251199>.

r-geniebpc 2.0.1
Propagated dependencies: r-tidyr@1.3.1 r-tibble@3.3.0 r-sunburstr@2.1.8 r-stringr@1.6.0 r-rlang@1.1.6 r-purrr@1.2.0 r-jsonlite@2.0.0 r-httr@1.4.7 r-dtplyr@1.3.2 r-dplyr@1.1.4 r-cli@3.6.5
Channel: guix-cran
Location: guix-cran/packages/g.scm (guix-cran packages g)
Home page: https://genie-bpc.github.io/genieBPC/
Licenses: Expat
Build system: r
Synopsis: Project GENIE BioPharma Collaborative Data Processing Pipeline
Description:

The American Association Research (AACR) Project Genomics Evidence Neoplasia Information Exchange (GENIE) BioPharma Collaborative represents a multi-year, multi-institution effort to build a pan-cancer repository of linked clinico-genomic data. The genomic and clinical data are provided in multiple releases (separate releases for each cancer cohort with updates following data corrections), which are stored on the data sharing platform Synapse <https://www.synapse.org/>. The genieBPC package provides a seamless way to obtain the data corresponding to each release from Synapse and to prepare datasets for analysis.

Page: 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861
Total results: 68655