Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Estimates a collection of time-indexed functions under either of Gaussian process (GP) or intrinsic Gaussian Markov random field (iGMRF) prior formulations where a Dirichlet process mixture allows sub-groupings of the functions to share the same covariance or precision parameters. The GP and iGMRF formulations both support any number of additive covariance or precision terms, respectively, expressing either or both of multiple trend and seasonality.
Uses a slice sampling-based Markov chain Monte Carlo to conduct Bayesian fitting and inference for generalized additive mixed models. Generalized linear mixed models and generalized additive models are also handled as special cases of generalized additive mixed models. The methodology and software is described in Pham, T.H. and Wand, M.P. (2018). Australian and New Zealand Journal of Statistics, 60, 279-330 <DOI:10.1111/ANZS.12241>.
The main purpose of this package is to allow fitting of mixture distributions with generalised additive models for location scale and shape models see Chapter 7 of Stasinopoulos et al. (2017) <doi:10.1201/b21973-4>.
Train a Gaussian stochastic process model of an unknown function, possibly observed with error, via maximum likelihood or maximum a posteriori (MAP) estimation, run model diagnostics, and make predictions, following Sacks, J., Welch, W.J., Mitchell, T.J., and Wynn, H.P. (1989) "Design and Analysis of Computer Experiments", Statistical Science, <doi:10.1214/ss/1177012413>. Perform sensitivity analysis and visualize low-order effects, following Schonlau, M. and Welch, W.J. (2006), "Screening the Input Variables to a Computer Model Via Analysis of Variance and Visualization", <doi:10.1007/0-387-28014-6_14>.
This package provides publication-ready volcano plots for visualizing differential expression results, commonly used in RNA-seq and similar analyses. This tool helps create high-quality visual representations of data using the ggplot2 framework Wickham (2016) <doi:10.1007/978-3-319-24277-4>.
This package provides a variety of functions to fit linear and nonlinear regression with a large selection of distributions.
This package contains ggplot2 geom for plotting brain atlases using simple features. The largest component of the package is the data for the two built-in atlases. Mowinckel & Vidal-Piñeiro (2020) <doi:10.1177/2515245920928009>.
Run a Gibbs sampler for a multivariate Bayesian sparse group selection model with Dirac, continuous and hierarchical spike prior for detecting pleiotropy on the traits. This package is designed for summary statistics containing estimated regression coefficients and its estimated covariance matrix. The methodology is available from: Baghfalaki, T., Sugier, P. E., Truong, T., Pettitt, A. N., Mengersen, K., & Liquet, B. (2021) <doi:10.1002/sim.8855>.
The Global Biodiversity Information Facility ('GBIF', <https://www.gbif.org>) sources data from an international network of data providers, known as nodes'. Several of these nodes - the "living atlases" (<https://living-atlases.gbif.org>) - maintain their own web services using software originally developed by the Atlas of Living Australia ('ALA', <https://www.ala.org.au>). galah enables the R community to directly access data and resources hosted by GBIF and its partner nodes.
This package provides a framework for analytically computing the asymptotic confidence intervals and maximum-likelihood estimates of a class of continuous-time Gaussian branching processes defined by Mitov V, Bartoszek K, Asimomitis G, Stadler T (2019) <doi:10.1016/j.tpb.2019.11.005>. The class of model includes the widely used Ornstein-Uhlenbeck and Brownian motion branching processes. The framework is designed to be flexible enough so that the users can easily specify their own sub-models, or re-parameterizations, and obtain the maximum-likelihood estimates and confidence intervals of their own custom models.
Providing access to the API for Gas Infrastructure Europe's natural gas transparency platforms <https://agsi.gie.eu/> and <https://alsi.gie.eu/>. Lets the user easily download metadata on companies and gas storage units covered by the API as well as the respective data on regional, country, company or facility level.
An implementation of SPRE (standardised predicted random-effects) statistics in R to explore heterogeneity in genetic association meta- analyses, as described by Magosi et al. (2019) <doi:10.1093/bioinformatics/btz590>. SPRE statistics are precision weighted residuals that indicate the direction and extent with which individual study-effects in a meta-analysis deviate from the average genetic effect. Overly influential positive outliers have the potential to inflate average genetic effects in a meta-analysis whilst negative outliers might lower or change the direction of effect. See the getspres website for documentation and examples <https://magosil86.github.io/getspres/>.
Interfaces GAMS data (*.gdx) files with data.table's using the GAMS R package gdxrrw'. The gdxrrw package is available on the GAMS wiki: <https://support.gams.com/doku.php?id=gdxrrw:interfacing_gams_and_r>.
Power and sample size calculations for genetic association studies allowing for misspecification of the model of genetic susceptibility. "Hum Hered. 2019;84(6):256-271.<doi:10.1159/000508558>. Epub 2020 Jul 28." Power and/or sample size can be calculated for logistic (case/control study design) and linear (continuous phenotype) regression models, using additive, dominant, recessive or degree of freedom coding of the genetic covariate while assuming a true dominant, recessive or additive genetic effect. In addition, power and sample size calculations can be performed for gene by environment interactions. These methods are extensions of Gauderman (2002) <doi:10.1093/aje/155.5.478> and Gauderman (2002) <doi:10.1002/sim.973> and are described in: Moore CM, Jacobson S, Fingerlin TE. Power and Sample Size Calculations for Genetic Association Studies in the Presence of Genetic Model Misspecification. American Society of Human Genetics. October 2018, San Diego.
This package provides an expectation-maximization (EM) algorithm using the approach introduced in Warasi (2023) <doi:10.1080/03610918.2021.2009867>. The EM algorithm can be used to estimate the prevalence (overall proportion) of a disease and to estimate a binary regression model from among the class of generalized linear models based on group testing data. The estimation framework we consider offers a flexible and general approach; i.e., its application is not limited to any specific group testing protocol. Consequently, the EM algorithm can model data arising from simple pooling as well as advanced pooling such as hierarchical testing, array testing, and quality control pooling. Also, provided are functions that can be used to conduct the Wald tests described in Buse (1982) <doi:10.1080/00031305.1982.10482817> and to simulate the group testing data described in Kim et al. (2007) <doi:10.1111/j.1541-0420.2007.00817.x>. We offer a function to compute relative efficiency measures, which can be used to optimize the maximum likelihood estimator of disease prevalence.
Computing Global Sensitivity Indices from given data using Optimal Transport, as defined in Borgonovo et al (2024) <doi:10.1287/mnsc.2023.01796>. You provide an input sample, an output sample, decide the algorithm, and compute the indices.
Read, manipulate, and digitize landmark data, generate shape variables via Procrustes analysis for points, curves and surfaces, perform shape analyses, and provide graphical depictions of shapes and patterns of shape variation.
Constructs gains tables and lift charts for prediction algorithms. Gains tables and lift charts are commonly used in direct marketing applications. The method is described in Drozdenko and Drake (2002), "Optimal Database Marketing", Chapter 11.
Implementation of routines of the author's PhD thesis on gradient-free Gradient Boosting (Werner, Tino (2020) "Gradient-Free Gradient Boosting", URL <https://oops.uni-oldenburg.de/id/eprint/4290>').
Full descriptive statistics, physical description of sediment, metric or phi sieves. Includes a Shiny web application for interactive grain size analysis and visualization.
This package provides functions for fitting various normal theory (growth curve) and elliptically-contoured repeated measurements models with ARMA and random effects dependence.
This package provides a ggplot2'-consistent approach to generating 2D displays of volumetric brain imaging data. Display data from multiple NIfTI images using standard ggplot2 conventions such scales, limits, and themes to control the appearance of displays. The resulting plots are returned as patchwork objects, inheriting from ggplot', allowing for any standard modifications of display aesthetics supported by ggplot2'.
The program GRNN implements the algorithm proposed by Specht (1991).
This package provides functions for performing polygon geometry with grid grobs. This allows complex shapes to be defined by combining simpler shapes.