Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides a mechanism to plot a Google Map from R and overlay it with shapes and markers. Also provides access to Google Maps APIs, including places, directions, roads, distances, geocoding, elevation and timezone.
Implemented are three Wald-type statistic and respective permuted versions for null hypotheses formulated in terms of cumulative hazard rate functions, medians and the concordance measure, respectively, in the general framework of survival factorial designs with possibly heterogeneous survival and/or censoring distributions, for crossed designs with an arbitrary number of factors and nested designs with up to three factors. Ditzhaus, Dobler and Pauly (2020) <doi:10.1177/0962280220980784> Ditzhaus, Janssen, Pauly (2020) <arXiv: 2004.10818v2> Dobler and Pauly (2019) <doi:10.1177/0962280219831316>.
These Bayesian models written in the Stan probabilistic language can be used to interpret green crab trapping and environmental DNA monitoring data, either independently or jointly. Detailed model information is found in Keller (2022) <doi:10.1002/eap.2561>.
Build graphs for landscape genetics analysis. This set of functions can be used to import and convert spatial and genetic data initially in different formats, import landscape graphs created with GRAPHAB software (Foltete et al., 2012) <doi:10.1016/j.envsoft.2012.07.002>, make diagnosis plots of isolation by distance relationships in order to choose how to build genetic graphs, create graphs with a large range of pruning methods, weight their links with several genetic distances, plot and analyse graphs, compare them with other graphs. It uses functions from other packages such as adegenet (Jombart, 2008) <doi:10.1093/bioinformatics/btn129> and igraph (Csardi et Nepusz, 2006) <https://igraph.org/>. It also implements methods commonly used in landscape genetics to create graphs, described by Dyer et Nason (2004) <doi:10.1111/j.1365-294X.2004.02177.x> and Greenbaum et Fefferman (2017) <doi:10.1111/mec.14059>, and to analyse distance data (van Strien et al., 2015) <doi:10.1038/hdy.2014.62>.
Fits the logistic equation to microbial growth curve data (e.g., repeated absorbance measurements taken from a plate reader over time). From this fit, a variety of metrics are provided, including the maximum growth rate, the doubling time, the carrying capacity, the area under the logistic curve, and the time to the inflection point. Method described in Sprouffske and Wagner (2016) <doi:10.1186/s12859-016-1016-7>.
The workflow is a versatile R package designed for comprehensive feature selection in bulk RNAseq datasets. Its key innovation lies in the seamless integration of the Python scikit-learn (<https://scikit-learn.org/stable/index.html>) machine learning framework with R-based bioinformatics tools. GeneSelectR performs robust Machine Learning-driven (ML) feature selection while leveraging Gene Ontology (GO) enrichment analysis as described by Thomas PD et al. (2022) <doi:10.1002/pro.4218>, using clusterProfiler (Wu et al., 2021) <doi:10.1016/j.xinn.2021.100141> and semantic similarity analysis powered by simplifyEnrichment (Gu, Huebschmann, 2021) <doi:10.1016/j.gpb.2022.04.008>. This combination of methodologies optimizes computational and biological insights for analyzing complex RNAseq datasets.
Fit penalized multivariable linear mixed models with a single random effect to control for population structure in genetic association studies. The goal is to simultaneously fit many genetic variants at the same time, in order to select markers that are independently associated with the response. Can also handle prior annotation information, for example, rare variants, in the form of variable weights. For more information, see the website below and the accompanying paper: Bhatnagar et al., "Simultaneous SNP selection and adjustment for population structure in high dimensional prediction models", 2020, <DOI:10.1371/journal.pgen.1008766>.
This is a GitHub API wrapper for R. <https://docs.github.com/en/rest> It uses the gh package but has things wrapped up for convenient use cases.
Several yield stability analyses are mentioned in this package: variation and regression based yield stability analyses. Resampling techniques are integrated with these stability analyses. The function stab.mean() provides the genotypic means and ranks including their corresponding confidence intervals. The function stab.var() provides the genotypic variances over environments including their corresponding confidence intervals. The function stab.fw() is an extended method from the Finlay-Wilkinson method (1963). This method can include several other factors that might impact yield stability. Resampling technique is integrated into this method. A few missing data points or unbalanced data are allowed too. The function stab.fw.check() is an extended method from the Finlay-Wilkinson method (1963). The yield stability is evaluated via common check line(s). Resampling technique is integrated.
This package provides functions for estimating a GARCHSK model and GJRSK model based on a publication by Leon et,al (2005)<doi:10.1016/j.qref.2004.12.020> and Nakagawa and Uchiyama (2020)<doi:10.3390/math8111990>. These are a GARCH-type model allowing for time-varying volatility, skewness and kurtosis.
Import genome variants data and perform gene haplotype Statistics, visualization and phenotype association with R'.
Convert a html document to plain texts by stripping off all html tags.
Probabilistic models describing the behavior of workload and queue on a High Performance Cluster and computing GRID under FIFO service discipline basing on modified Kiefer-Wolfowitz recursion. Also sample data for inter-arrival times, service times, number of cores per task and waiting times of HPC of Karelian Research Centre are included, measurements took place from 06/03/2009 to 02/30/2011. Functions provided to import/export workload traces in Standard Workload Format (swf). Stability condition of the model may be verified either exactly, or approximately. Stability analysis: see Rumyantsev and Morozov (2017) <doi:10.1007/s10479-015-1917-2>, workload recursion: see Rumyantsev (2014) <doi:10.1109/PDCAT.2014.36>.
This package provides S4 classes and methods for reading and manipulating aligned DNA sequences, supporting an indel-coding method (only simple indel-coding method is available in the current version), showing base substitutions and indels, calculating absolute pairwise distances between DNA sequences, and collapsing identical DNA sequences into haplotypes or inferring haplotypes using user-provided absolute pairwise character difference matrix. This package also includes S4 classes and methods for estimating genealogical relationships among haplotypes using statistical parsimony and plotting parsimony networks.
Higher order likelihood inference is a promising approach for analyzing small sample size data. The holi package provides web applications for higher order likelihood inference. It currently supports linear, logistic, and Poisson generalized linear models through the rstar_glm() function, based on Pierce and Bellio (2017) <doi:10.1111/insr.12232> and likelihoodAsy'. The package offers two main features: LA_rstar(), which launches an interactive shiny application allowing users to fit models with rstar_glm() through their web browser, and sim_rstar_glm_pgsql(), which streamlines the process of launching a web-based shiny simulation application that saves results to a user-created PostgreSQL database.
Programmatic interface to the Harmonized World Soil Database HWSD web services (<https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1247>). Allows for easy downloads of HWSD soil data directly to your R workspace or your computer. Routines for both single pixel data downloads and gridded data are provided.
Ridge regression provide biased estimators of the regression parameters with lower variance. The HDBRR ("High Dimensional Bayesian Ridge Regression") function fits Bayesian Ridge regression without MCMC, this one uses the SVD or QR decomposition for the posterior computation.
Generates a fit plot for diagnosing misspecification in models of binary dependent variables, and calculates the related heatmap fit statistic described in Esarey and Pierce (2012) <DOI:10.1093/pan/mps026>.
The Gene Ontology (GO) Consortium <https://geneontology.org/> organizes genes into hierarchical categories based on biological process (BP), molecular function (MF) and cellular component (CC, i.e., subcellular localization). Tools such as GoMiner (see Zeeberg, B.R., Feng, W., Wang, G. et al. (2003) <doi:10.1186/gb-2003-4-4-r28>) can leverage GO to perform ontological analysis of microarray and proteomics studies, typically generating a list of significant functional categories. To capture the benefit of all three ontologies, I developed HTGM3D', a three-dimensional version of GoMiner'.
In order to improve performance for HTTP API clients, httpcache provides simple tools for caching and invalidating cache. It includes the HTTP verb functions GET, PUT, PATCH, POST, and DELETE, which are drop-in replacements for those in the httr package. These functions are cache-aware and provide default settings for cache invalidation suitable for RESTful APIs; the package also enables custom cache-management strategies. Finally, httpcache includes a basic logging framework to facilitate the measurement of HTTP request time and cache performance.
The theoretical covariance between pairs of markers is calculated from either paternal haplotypes and maternal linkage disequilibrium (LD) or vise versa. A genetic map is required. Grouping of markers is based on the correlation matrix and a representative marker is suggested for each group. Employing the correlation matrix, optimal sample size can be derived for association studies based on a SNP-BLUP approach. The implementation relies on paternal half-sib families and biallelic markers. If maternal half-sib families are used, the roles of sire/dam are swapped. Multiple families can be considered. Wittenburg, Bonk, Doschoris, Reyer (2020) "Design of Experiments for Fine-Mapping Quantitative Trait Loci in Livestock Populations" <doi:10.1186/s12863-020-00871-1>. Carlson, Eberle, Rieder, Yi, Kruglyak, Nickerson (2004) "Selecting a maximally informative set of single-nucleotide polymorphisms for association analyses using linkage disequilibrium" <doi:10.1086/381000>.
This package provides functions to view files in raw binary form like in a hex editor. Additional functions to specify and read arbitrary binary formats.
Computes the hemodynamic response function (HRF) for task functional magnetic resonance imaging (fMRI) data. Also includes functions for constructing a design matrix from task fMRI event timings, and for comparing multiple design matrices in a general linear model (GLM). A wrapper function is provided for GLM analysis of CIFTI-format data. Lastly, there are supporting functions which provide visual summaries of the HRFs and design matrices.
Functions, data sets, analyses and examples from the book A Handbook of Statistical Analyses Using R (Brian S. Everitt and Torsten Hothorn, Chapman & Hall/CRC, 2006). The first chapter of the book, which is entitled An Introduction to R'', is completely included in this package, for all other chapters, a vignette containing all data analyses is available.