Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides functions to access data from public RESTful APIs including FINDIC API', REST Countries API', World Bank API', and Nager.Date', retrieving real-time or historical data related to Chile such as financial indicators, holidays, international demographic and geopolitical indicators, and more. Additionally, the package includes curated datasets related to Chile, covering topics such as human rights violations during the Pinochet regime, electoral data, census samples, health surveys, seismic events, territorial codes, and environmental measurements. The package supports research and analysis focused on Chile by integrating open APIs with high-quality datasets from multiple domains. For more information on the APIs, see: FINDIC <https://findic.cl/>, REST Countries <https://restcountries.com/>, World Bank API <https://datahelpdesk.worldbank.org/knowledgebase/articles/889392>, and Nager.Date <https://date.nager.at/Api>.
This package performs least squares constrained optimization on a linear objective function. It contains a number of algorithms to choose from and offers a formula syntax similar to lm().
Solves multivariate least squares (MLS) problems subject to constraints on the coefficients, e.g., non-negativity, orthogonality, equality, inequality, monotonicity, unimodality, smoothness, etc. Includes flexible functions for solving MLS problems subject to user-specified equality and/or inequality constraints, as well as a wrapper function that implements 24 common constraint options. Also does k-fold or generalized cross-validation to tune constraint options for MLS problems. See ten Berge (1993, ISBN:9789066950832) for an overview of MLS problems, and see Goldfarb and Idnani (1983) <doi:10.1007/BF02591962> for a discussion of the underlying quadratic programming algorithm.
Compute covariate-adjusted specificity at controlled sensitivity level, or covariate-adjusted sensitivity at controlled specificity level, or covariate-adjust receiver operating characteristic curve, or covariate-adjusted thresholds at controlled sensitivity/specificity level. All statistics could also be computed for specific sub-populations given their covariate values. Methods are described in Ziyi Li, Yijian Huang, Datta Patil, Martin G. Sanda (2021+) "Covariate adjustment in continuous biomarker assessment".
This package provides a modified boxplot with a new fence coefficient determined by Lin et al. (2025). The traditional fence coefficient k=1.5 in Tukey's boxplot is replaced by a coefficient based on Chauvenet's criterion, as described in their formula (9). The new boxplot can be implemented in base R with function chau_boxplot(), and in ggplot2 with function geom_chau_boxplot().
Modeling associations between covariates and power spectra of replicated time series using a cepstral-based semiparametric framework. Implements a fast two-stage estimation procedure via Whittle likelihood and multivariate regression.The methodology is based on Li and Dong (2025) <doi:10.1080/10618600.2025.2473936>.
This package provides a method for determining groups in multiple curves with an automatic selection of their number based on k-means or k-medians algorithms. The selection of the optimal number is provided by bootstrap methods or other approaches with lower computational cost. The methodology can be applied both in regression and survival framework. Implemented methods are: Grouping multiple survival curves described by Villanueva et al. (2018) <doi:10.1002/sim.8016>.
Fits or generalized linear models either a regression with Autoregressive moving-average (ARMA) errors for time series data. The package makes it easy to incorporate constraints into the model's coefficients. The model is specified by an objective function (Gaussian, Binomial or Poisson) or an ARMA order (p,q), a vector of bound constraints for the coefficients (i.e beta1 > 0) and the possibility to incorporate restrictions among coefficients (i.e beta1 > beta2). The references of this packages are the same as stats package for glm() and arima() functions. See Brockwell, P. J. and Davis, R. A. (1996, ISBN-10: 9783319298528). For the different optimizers implemented, it is recommended to consult the documentation of the corresponding packages.
This package provides methods for difference-in-differences with a continuous treatment and staggered treatment adoption. Includes estimation of treatment effects and causal responses as a function of the dose, event studies indexed by length of exposure to the treatment, and aggregation into overall average effects. Uniform inference procedures are included, along with both parametric and nonparametric models for treatment effects. The methods are based on Callaway, Goodman-Bacon, and Sant'Anna (2025) <doi:10.48550/arXiv.2107.02637>.
Example data sets to run the example problems from causal inference textbooks. Currently, contains data sets for Huntington-Klein, Nick (2021 and 2025) "The Effect" <https://theeffectbook.net>, first and second edition, Cunningham, Scott (2021 and 2025, ISBN-13: 978-0-300-25168-5) "Causal Inference: The Mixtape", and Hernán, Miguel and James Robins (2020) "Causal Inference: What If" <https://www.hsph.harvard.edu/miguel-hernan/causal-inference-book/>.
Maximum likelihood estimation in respondent driven samples.
In metabolic flux experiments tracer molecules (often glucose containing labelled carbon) are incorporated in compounds measured using mass spectrometry. The mass isotopologue distributions of these compounds needs to be corrected for natural abundance of labelled carbon and other effects, which are specific on the compound and ionization technique applied. This package provides functions to correct such effects in gas chromatography atmospheric pressure chemical ionization mass spectrometry analyses.
Accelerate the process from clinical data to medical publication, including clinical data cleaning, significant result screening, and the generation of publish-ready tables and figures.
Implementation of the categorical instrumental variable (CIV) estimator proposed by Wiemann (2023) <arXiv:2311.17021>. CIV allows for optimal instrumental variable estimation in settings with relatively few observations per category. To obtain valid inference in these challenging settings, CIV leverages a regularization assumption that implies existence of a latent categorical variable with fixed finite support achieving the same first stage fit as the observed instrument.
Estimates hidden Markov models from the family of Cholesky-decomposed Gaussian hidden Markov models (CDGHMM) under various missingness schemes. This family improves upon estimation of traditional Gaussian HMMs by introducing parsimony, as well as, controlling for dropped out observations and non-random missingness. See Neal, Sochaniwsky and McNicholas (2024) <DOI:10.1007/s11222-024-10462-0>.
Calculates predictions from generalized estimating equations and internally cross-validates them using the logarithmic, quadratic and spherical proper scoring rules; Kung-Yee Liang and Scott L. Zeger (1986) <doi:10.1093/biomet/73.1.13>.
Call the DeOldify <https://github.com/jantic/DeOldify> image colorization API on DeepAI'<https://deepai.org/machine-learning-model/colorizer> to colorize black and white images.
Implement tableGrob object as a clickable image map. The clickableImageMap package is designed to be more convenient and more configurable than the edit() function. Limitations that I have encountered with edit() are cannot control (1) positioning (2) size (3) appearance and formatting of fonts In contrast, when the table is implemented as a tableGrob', all of these features are controllable. In particular, the ggplot2 grid system allows exact positioning of the table relative to other graphics etc.
This package performs Correlated Meta-Analysis ('corrmeta') across multiple OMIC scans, accounting for hidden non-independencies between elements of the scans due to overlapping samples, related samples, or other information. For more information about the method, refer to the paper Province MA. (2013) <doi:10.1142/9789814447973_0023>.
Quantifies and assesses the significance of convergent evolution using multiple methods and measures as described in Stayton (2015) <DOI: 10.1111/evo.12729> and Grossnickle et al. 2023. Also displays results in various ways.
Estimation of 2-level factor copula-based regression models for clustered data where the response variable can be either discrete or continuous.
This package implements several string comparison algorithms, including calACS (count all common subsequences), lenACS (calculate the lengths of all common subsequences), and lenLCS (calculate the length of the longest common subsequence). Some algorithms differentiate between the more strict definition of subsequence, where a common subsequence cannot be separated by any other items, from its looser counterpart, where a common subsequence can be interrupted by other items. This difference is shown in the suffix of the algorithm (-Strict vs -Loose). For example, q-w is a common subsequence of q-w-e-r and q-e-w-r on the looser definition, but not on the more strict definition. calACSLoose Algorithm from Wang, H. All common subsequences (2007) IJCAI International Joint Conference on Artificial Intelligence, pp. 635-640.
We implement causal decomposition analysis using methods proposed by Park, Lee, and Qin (2022) and Park, Kang, and Lee (2023), which provide researchers with multiple-mediator imputation, single-mediator imputation, and product-of-coefficients regression approaches to estimate the initial disparity, disparity reduction, and disparity remaining (<doi:10.1177/00491241211067516>; <doi:10.1177/00811750231183711>). We also implement sensitivity analysis for causal decomposition using R-squared values as sensitivity parameters (Park, Kang, Lee, and Ma, 2023 <doi:10.1515/jci-2022-0031>). Finally, we include individualized causal decomposition and sensitivity analyses proposed by Park, Kang, and Lee (2025+) <doi:10.48550/arXiv.2506.19010>.
This package performs forward model selection, using the C-index/concordance in survival analysis models.