Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Extract and monitor price and market cap of Cryptocurrencies from Coin Market Cap <https://coinmarketcap.com/api/>.
This package provides a set of functions to implement the Combined Compromise Solution (CoCoSo) Method created by Yazdani, Zarate, Zavadskas and Turskis (2019) <doi:10.1108/MD-05-2017-0458>. This method is based on an integrated simple additive weighting and compromise exponentially weighted product model.
This package provides functions for constructing simultaneous credible bands and identifying subsets via the "credible subsets" (also called "credible subgroups") method. Package documentation includes the vignette included in this package, and the paper by Schnell, Fiecas, and Carlin (2020, <doi:10.18637/jss.v094.i07>).
Fit flexible and fully parametric hazard regression models to survival data with single event type or multiple competing causes via logistic and multinomial regression. Our formulation allows for arbitrary functional forms of time and its interactions with other predictors for time-dependent hazards and hazard ratios. From the fitted hazard model, we provide functions to readily calculate and plot cumulative incidence and survival curves for a given covariate profile. This approach accommodates any log-linear hazard function of prognostic time, treatment, and covariates, and readily allows for non-proportionality. We also provide a plot method for visualizing incidence density via population time plots. Based on the case-base sampling approach of Hanley and Miettinen (2009) <DOI:10.2202/1557-4679.1125>, Saarela and Arjas (2015) <DOI:10.1111/sjos.12125>, and Saarela (2015) <DOI:10.1007/s10985-015-9352-x>.
Simulating and estimating peer effect models and network formation models. The class of peer effect models includes linear-in-means models (Lee, 2004; <doi:10.1111/j.1468-0262.2004.00558.x>), Tobit models (Xu and Lee, 2015; <doi:10.1016/j.jeconom.2015.05.004>), and discrete numerical data models (Houndetoungan, 2024; <doi:10.2139/ssrn.3721250>). The network formation models include pair-wise regressions with degree heterogeneity (Graham, 2017; <doi:10.3982/ECTA12679>) and exponential random graph models (Mele, 2017; <doi:10.3982/ECTA10400>).
Implement tableGrob object as a clickable image map. The clickableImageMap package is designed to be more convenient and more configurable than the edit() function. Limitations that I have encountered with edit() are cannot control (1) positioning (2) size (3) appearance and formatting of fonts In contrast, when the table is implemented as a tableGrob', all of these features are controllable. In particular, the ggplot2 grid system allows exact positioning of the table relative to other graphics etc.
Set of forecasting tools to predict ICU beds using a Vector Error Correction model with a single cointegrating vector. Method described in Berta, P. Lovaglio, P.G. Paruolo, P. Verzillo, S., 2020. "Real Time Forecasting of Covid-19 Intensive Care Units demand" Health, Econometrics and Data Group (HEDG) Working Papers 20/16, HEDG, Department of Economics, University of York, <https://www.york.ac.uk/media/economics/documents/hedg/workingpapers/2020/2016.pdf>.
Computes effect sizes, standard errors, and confidence intervals for total, direct, and indirect effects in continuous-time mediation models as described in Pesigan, Russell, and Chow (2025) <doi:10.1037/met0000779>.
This package implements several string comparison algorithms, including calACS (count all common subsequences), lenACS (calculate the lengths of all common subsequences), and lenLCS (calculate the length of the longest common subsequence). Some algorithms differentiate between the more strict definition of subsequence, where a common subsequence cannot be separated by any other items, from its looser counterpart, where a common subsequence can be interrupted by other items. This difference is shown in the suffix of the algorithm (-Strict vs -Loose). For example, q-w is a common subsequence of q-w-e-r and q-e-w-r on the looser definition, but not on the more strict definition. calACSLoose Algorithm from Wang, H. All common subsequences (2007) IJCAI International Joint Conference on Artificial Intelligence, pp. 635-640.
Continuous glucose monitoring (CGM) systems provide real-time, dynamic glucose information by tracking interstitial glucose values throughout the day. Glycemic variability, also known as glucose variability, is an established risk factor for hypoglycemia (Kovatchev) and has been shown to be a risk factor in diabetes complications. Over 20 metrics of glycemic variability have been identified. Here, we provide functions to calculate glucose summary metrics, glucose variability metrics (as defined in clinical publications), and visualizations to visualize trends in CGM data. Cho P, Bent B, Wittmann A, et al. (2020) <https://diabetes.diabetesjournals.org/content/69/Supplement_1/73-LB.abstract> American Diabetes Association (2020) <https://professional.diabetes.org/diapro/glucose_calc> Kovatchev B (2019) <doi:10.1177/1932296819826111> Kovdeatchev BP (2017) <doi:10.1038/nrendo.2017.3> Tamborlane W V., Beck RW, Bode BW, et al. (2008) <doi:10.1056/NEJMoa0805017> Umpierrez GE, P. Kovatchev B (2018) <doi:10.1016/j.amjms.2018.09.010>.
Provided R functions for working with the Conditional Negative Binomial distribution.
Simple and seamless access to a variety of StatCan shapefiles for mapping Canadian provinces, regions, forward sortation areas, census divisions, and subdivisions using the popular ggplot2 package.
This package provides functions for calculating the conditional power for different models in survival time analysis within randomized clinical trials with two different treatments to be compared and survival as an endpoint.
This package provides a new method for identification of clusters of genomic regions within chromosomes. Primarily, it is used for calling clusters of cis-regulatory elements (COREs). CREAM uses genome-wide maps of genomic regions in the tissue or cell type of interest, such as those generated from chromatin-based assays including DNaseI, ATAC or ChIP-Seq. CREAM considers proximity of the elements within chromosomes of a given sample to identify COREs in the following steps: 1) It identifies window size or the maximum allowed distance between the elements within each CORE, 2) It identifies number of elements which should be clustered as a CORE, 3) It calls COREs, 4) It filters the COREs with lowest order which does not pass the threshold considered in the approach.
Easy access to data from Brazil's population censuses. The package provides a simple and efficient way to download and read the data sets and the documentation of all the population censuses taken in and after 1960 in the country. The package is built on top of the Arrow platform <https://arrow.apache.org/docs/r/>, which allows users to work with larger-than-memory census data using dplyr familiar functions. <https://arrow.apache.org/docs/r/articles/arrow.html#analyzing-arrow-data-with-dplyr>.
This comprehensive framework for periodic time series modeling is designated as "CLIC" (The LIC for Distributed Cosine Regression Analysis) analysis. It is predicated on the assumption that the underlying data exhibits complex periodic structures beyond simple harmonic components. The philosophy of the method is articulated in Guo G. (2020) <doi:10.1080/02664763.2022.2053949>.
This package provides functions to perform comparative causal mediation analysis to compare the mediation effects of different treatments via a common mediator. Results contain the estimates and confidence intervals for the two comparative causal mediation analysis estimands, as well as the ATE and ACME for each treatment. Functions provided in the package will automatically assess the comparative causal mediation analysis scope conditions (i.e. for each comparative causal mediation estimand, a numerator and denominator that are both estimated with the desired statistical significance and of the same sign). Results will be returned for each comparative causal mediation estimand only if scope conditions are met for it. See details in Bansak(2020)<doi:10.1017/pan.2019.31>.
This package provides a shortcut procedure is proposed to implement closed testing for large-scale multiple testings, especially with the global test. This shortcut is asymptotically equivalent to closed testing and post hoc. Users could detect any possible sets of features or pathways with family-wise error rate controlled. The global test is powerful to detect associations between a group of features and an outcome of interest.
Expands the connector <https://github.com/NovoNordisk-OpenSource/connector> package and provides a convenient interface for accessing and interacting with Databricks <https://www.databricks.com> volumes and tables directly from R.
Provide step by step guided tours of Shiny applications.
Estimates conditional binary quantile models developed by Lu (2020) <doi:10.1017/pan.2019.29>. The estimation procedure is implemented based on Markov chain Monte Carlo methods.
The CloudOS client library for R makes it easy to interact with CloudOS in the R environment for analysis.
Generate project files and directories following a pre-made template. You can specify variables to customize file names and content, and flexibly adapt the template to your needs. cookiecutter for R implements a subset of the excellent cookiecutter package for the Python programming language (<https://github.com/cookiecutter/>), and aims to be largely compatible with the original cookiecutter template format.
This package provides functions for the estimation of conditional copulas models, various estimators of conditional Kendall's tau (proposed in Derumigny and Fermanian (2019a, 2019b, 2020) <doi:10.1515/demo-2019-0016>, <doi:10.1016/j.csda.2019.01.013>, <doi:10.1016/j.jmva.2020.104610>), and test procedures for the simplifying assumption (proposed in Derumigny and Fermanian (2017) <doi:10.1515/demo-2017-0011> and Derumigny, Fermanian and Min (2022) <doi:10.1002/cjs.11742>).