Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
The package facilitates implementation of workflows requiring miRNA predictions, it allows to integrate ranked miRNA target predictions from multiple sources available online and aggregate them with various methods which improves quality of predictions above any of the single sources. Currently predictions are available for Homo sapiens, Mus musculus and Rattus norvegicus (the last one through homology translation).
Toolbox for larger-than-memory scientific computing and visualization, providing efficient out-of-core data structures using files or shared memory, for dense and sparse vectors, matrices, and arrays, with applications to nonuniformly sampled signals and images.
Calculates a single number for a whole sequence that reflects the propensity of a DNA binding protein to interact with it. The DNA binding protein has to be described with a PFM matrix, for example gotten from Jaspar.
Indole-3-acetaldoxime (IAOx) represents an early intermediate of the biosynthesis of a variety of indolic secondary metabolites including the phytoanticipin indol-3-ylmethyl glucosinolate and the phytoalexin camalexin (3-thiazol-2'-yl-indole). Arabidopsis thaliana cyp79B2 cyp79B3 double knockout plants are completely impaired in the conversion of tryptophan to indole-3-acetaldoxime and do not accumulate IAOx-derived metabolites any longer. Consequently, comparative analysis of wild-type and cyp79B2 cyp79B3 plant lines has the potential to explore the complete range of IAOx-derived indolic secondary metabolites.
The MicrobiomeBenchmarkData package provides functionality to access microbiome datasets suitable for benchmarking. These datasets have some biological truth, which allows to have expected results for comparison. The datasets come from various published sources and are provided as TreeSummarizedExperiment objects. Currently, only datasets suitable for benchmarking differential abundance methods are available.
Model-based Gene Set Analysis (MGSA) is a Bayesian modeling approach for gene set enrichment. The package mgsa implements MGSA and tools to use MGSA together with the Gene Ontology.
MetaboDynamics is an R-package that provides a framework of probabilistic models to analyze longitudinal metabolomics data. It enables robust estimation of mean concentrations despite varying spread between timepoints and reports differences between timepoints as well as metabolite specific dynamics profiles that can be used for identifying "dynamics clusters" of metabolites of similar dynamics. Provides probabilistic over-representation analysis of KEGG functional modules and pathways as well as comparison between clusters of different experimental conditions.
magrene allows the identification and analysis of graph motifs in (duplicated) gene regulatory networks (GRNs), including lambda, V, PPI V, delta, and bifan motifs. GRNs can be tested for motif enrichment by comparing motif frequencies to a null distribution generated from degree-preserving simulated GRNs. Motif frequencies can be analyzed in the context of gene duplications to explore the impact of small-scale and whole-genome duplications on gene regulatory networks. Finally, users can calculate interaction similarity for gene pairs based on the Sorensen-Dice similarity index.
This package was automatically created by package AnnotationForge version 1.11.21. The probe sequence data was obtained from http://www.affymetrix.com. The file name was Maize\_probe\_tab.
Store minor allele frequency data from the Genome Aggregation Database (gnomAD exomes release 2.1) for the human genome version hs37d5.
DNA methylation contains information about the regulatory state of the cell. MIRA aggregates genome-scale DNA methylation data into a DNA methylation profile for a given region set with shared biological annotation. Using this profile, MIRA infers and scores the collective regulatory activity for the region set. MIRA facilitates regulatory analysis in situations where classical regulatory assays would be difficult and allows public sources of region sets to be leveraged for novel insight into the regulatory state of DNA methylation datasets.
The miaViz package implements functions to visualize TreeSummarizedExperiment objects especially in the context of microbiome analysis. Part of the mia family of R/Bioconductor packages.
MOSim package simulates multi-omic experiments that mimic regulatory mechanisms within the cell, allowing flexible experimental design including time course and multiple groups.
This package uses an innovative network-based approach that will enhance our ability to determine the identities of significant ions detected by LC-MS.
This package provides a seamless interface to the MEME Suite family of tools for motif analysis. memes provides data aware utilities for using GRanges objects as entrypoints to motif analysis, data structures for examining & editing motif lists, and novel data visualizations. memes functions and data structures are amenable to both base R and tidyverse workflows.
Affymetrix Affymetrix Mouse430_2 Array annotation data (chip mouse4302) assembled using data from public repositories.
This package provides methods for genetic finemapping in inbred mice by taking advantage of their very high homozygosity rate (>95%).
This package contains example data for the MUGA array that is used by the R package DOQTL.
motifcounter provides motif matching, motif counting and motif enrichment functionality based on position frequency matrices. The main features of the packages include the utilization of higher-order background models and accounting for self-overlapping motif matches when determining motif enrichment. The background model allows to capture dinucleotide (or higher-order nucleotide) composition adequately which may reduced model biases and misleading results compared to using simple GC background models. When conducting a motif enrichment analysis based on the motif match count, the package relies on a compound Poisson distribution or alternatively a combinatorial model. These distribution account for self-overlapping motif structures as exemplified by repeat-like or palindromic motifs, and allow to determine the p-value and fold-enrichment for a set of observed motif matches.
This package provides a package containing an environment representing the MG_U74Av2.CDF file.
MSstats package provide tools for preprocessing, summarization and differential analysis of mass spectrometry (MS) proteomics data. Recently, some MS protocols enable acquisition of data sets that result in larger than memory quantitative data. MSstats functions are not able to process such data. MSstatsBig package provides additional converter functions that enable processing larger than memory data sets.
This package was automatically created by package AnnotationForge version 1.11.21. The probe sequence data was obtained from http://www.affymetrix.com. The file name was Mouse430\_2\_probe\_tab.
The package provides statistical tools for detecting differentially abundant proteins in shotgun mass spectrometry-based proteomic experiments with tandem mass tag (TMT) labeling. It provides multiple functionalities, including aata visualization, protein quantification and normalization, and statistical modeling and inference. Furthermore, it is inter-operable with other data processing tools, such as Proteome Discoverer, MaxQuant, OpenMS and SpectroMine.
The package conducts pathway testing from untargetted metabolomics data. It requires the user to supply feature-level test results, from case-control testing, regression, or other suitable feature-level tests for the study design. Weights are given to metabolic features based on how many metabolites they could potentially match to. The package can combine positive and negative mode results in pathway tests.