Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Agilent "Mouse Genome, Whole" annotation data (chip mgug4122a) assembled using data from public repositories.
Computes Mantel cluster correlations from a (p x n) numeric data matrix (e.g. microarray gene-expression data).
Affymetrix mogene10 annotation data (chip mogene10stprobeset) assembled using data from public repositories.
This package provides a collection of microRNAs/targets from external resources, including validated microRNA-target databases (miRecords, miRTarBase and TarBase), predicted microRNA-target databases (DIANA-microT, ElMMo, MicroCosm, miRanda, miRDB, PicTar, PITA and TargetScan) and microRNA-disease/drug databases (miR2Disease, Pharmaco-miR VerSe and PhenomiR).
Test datasets from the MACS3 test examples are use in the examples of the `MACSr` package. All 9 datasets are uploaded to the `ExperimentHub`. The original data can be found at: https://github.com/macs3-project/MACS/.
MetaDICT is a method for the integration of microbiome data. This method is designed to remove batch effects and preserve biological variation while integrating heterogeneous datasets. MetaDICT can better avoid overcorrection when unobserved confounding variables are present.
The MAIT package contains functions to perform end-to-end statistical analysis of LC/MS Metabolomic Data. Special emphasis is put on peak annotation and in modular function design of the functions.
This package provides a package containing an environment representing the Mu6500subD.CDF file.
multiHiCcompare provides functions for joint normalization and difference detection in multiple Hi-C datasets. This extension of the original HiCcompare package now allows for Hi-C experiments with more than 2 groups and multiple samples per group. multiHiCcompare operates on processed Hi-C data in the form of sparse upper triangular matrices. It accepts four column (chromosome, region1, region2, IF) tab-separated text files storing chromatin interaction matrices. multiHiCcompare provides cyclic loess and fast loess (fastlo) methods adapted to jointly normalizing Hi-C data. Additionally, it provides a general linear model (GLM) framework adapting the edgeR package to detect differences in Hi-C data in a distance dependent manner.
Affymetrix Affymetrix Mu11KsubB Array annotation data (chip mu11ksubb) assembled using data from public repositories.
Fragmentation spectral libraries and data to test the msPurity package.
This package was automatically created by package AnnotationForge version 1.11.21. The probe sequence data was obtained from http://www.affymetrix.com. The file name was MG-U74A\_probe\_tab.
This package provides a package containing an environment representing the MG_U74C.cdf file.
The understanding of cancer mechanism requires the identification of genes playing a role in the development of the pathology and the characterization of their role (notably oncogenes and tumor suppressors). We present an updated version of the R/bioconductor package called MoonlightR, namely Moonlight2R, which returns a list of candidate driver genes for specific cancer types on the basis of omics data integration. The Moonlight framework contains a primary layer where gene expression data and information about biological processes are integrated to predict genes called oncogenic mediators, divided into putative tumor suppressors and putative oncogenes. This is done through functional enrichment analyses, gene regulatory networks and upstream regulator analyses to score the importance of well-known biological processes with respect to the studied cancer type. By evaluating the effect of the oncogenic mediators on biological processes or through random forests, the primary layer predicts two putative roles for the oncogenic mediators: i) tumor suppressor genes (TSGs) and ii) oncogenes (OCGs). As gene expression data alone is not enough to explain the deregulation of the genes, a second layer of evidence is needed. We have automated the integration of a secondary mutational layer through new functionalities in Moonlight2R. These functionalities analyze mutations in the cancer cohort and classifies these into driver and passenger mutations using the driver mutation prediction tool, CScape-somatic. Those oncogenic mediators with at least one driver mutation are retained as the driver genes. As a consequence, this methodology does not only identify genes playing a dual role (e.g. TSG in one cancer type and OCG in another) but also helps in elucidating the biological processes underlying their specific roles. In particular, Moonlight2R can be used to discover OCGs and TSGs in the same cancer type. This may for instance help in answering the question whether some genes change role between early stages (I, II) and late stages (III, IV). In the future, this analysis could be useful to determine the causes of different resistances to chemotherapeutic treatments. An additional mechanistic layer evaluates if there are mutations affecting the protein stability of the transcription factors (TFs) of the TSGs and OCGs, as that may have an effect on the expression of the genes.
MWASTools provides a complete pipeline to perform metabolome-wide association studies. Key functionalities of the package include: quality control analysis of metabonomic data; MWAS using different association models (partial correlations; generalized linear models); model validation using non-parametric bootstrapping; visualization of MWAS results; NMR metabolite identification using STOCSY; and biological interpretation of MWAS results.
Affymetrix Affymetrix Mu19KsubB Array annotation data (chip mu19ksubb) assembled using data from public repositories.
Affymetrix Affymetrix Mu11KsubA Array annotation data (chip mu11ksuba) assembled using data from public repositories.
The Model-based Analysis of ChIP-Seq (MACS) is a widely used toolkit for identifying transcript factor binding sites. This package is an R wrapper of the lastest MACS3.
Package includes functions to analyze and mask microarray expression data.
This package provides several functions to explore miRNA sponge (also called ceRNA or miRNA decoy) regulation from putative miRNA-target interactions or/and transcriptomics data (including bulk, single-cell and spatial gene expression data). It provides eight popular methods for identifying miRNA sponge interactions, and an integrative method to integrate miRNA sponge interactions from different methods, as well as the functions to validate miRNA sponge interactions, and infer miRNA sponge modules, conduct enrichment analysis of miRNA sponge modules, and conduct survival analysis of miRNA sponge modules. By using a sample control variable strategy, it provides a function to infer sample-specific miRNA sponge interactions. In terms of sample-specific miRNA sponge interactions, it implements three similarity methods to construct sample-sample correlation network.
Affymetrix mogene21 annotation data (chip mogene21sttranscriptcluster) assembled using data from public repositories.
This package was automatically created by package AnnotationForge version 1.11.21. The probe sequence data was obtained from http://www.affymetrix.com. The file name was MG-U74C\_probe\_tab.
metaCCA performs multivariate analysis of a single or multiple GWAS based on univariate regression coefficients. It allows multivariate representation of both phenotype and genotype. metaCCA extends the statistical technique of canonical correlation analysis to the setting where original individual-level records are not available, and employs a covariance shrinkage algorithm to achieve robustness.
Base annotation databases for malaria, intended ONLY to be used by AnnotationDbi to produce regular annotation packages.