Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
It computes full conformal, split conformal and multi split conformal prediction regions when the response has functional nature. Moreover, the package also contain a plot function to visualize the output of the split conformal. To guarantee consistency, the package structure mimics the univariate conformalInference package of professor Ryan Tibshirani. The main references for the code are: Diquigiovanni, Fontana, and Vantini (2021) <arXiv:2102.06746>, Diquigiovanni, Fontana, and Vantini (2021) <arXiv:2106.01792>, Solari, and Djordjilovic (2021) <arXiv:2103.00627>.
This package implements the Cross-contribution Compensating Multiple standard Normalization (CCMN) method described in Redestig et al. (2009) Analytical Chemistry <doi:10.1021/ac901143w> and other normalization algorithms.
This package provides a collection of functions to generate a large variety of structures in high dimensions. These data structures are useful for testing, validating, and improving algorithms used in dimensionality reduction, clustering, machine learning, and visualization.
Hierarchical and partitioning algorithms to cluster blocks of variables. The partitioning algorithm includes an option called noise cluster to set aside atypical blocks of variables. Different thresholds per cluster can be sets. The CLUSTATIS method (for quantitative blocks) (Llobell, Cariou, Vigneau, Labenne & Qannari (2020) <doi:10.1016/j.foodqual.2018.05.013>, Llobell, Vigneau & Qannari (2019) <doi:10.1016/j.foodqual.2019.02.017>) and the CLUSCATA method (for Check-All-That-Apply data) (Llobell, Cariou, Vigneau, Labenne & Qannari (2019) <doi:10.1016/j.foodqual.2018.09.006>, Llobell, Giacalone, Labenne & Qannari (2019) <doi:10.1016/j.foodqual.2019.05.017>) are the core of this package. The CATATIS methods allows to compute some indices and tests to control the quality of CATA data. Multivariate analysis and clustering of subjects for quantitative multiblock data, CATA, RATA, Free Sorting and JAR experiments are available. Clustering of rows in multi-block context (notably with ClusMB strategy) is also included.
This package provides functions for constructing and evaluating CUSUM charts and RA-CUSUM charts with focus on false signal probability.
We propose a method to estimate the probability of an undetected case of COVID-19 in a defined setting, when a given number of people have been exposed, with a given pretest probability of having COVID-19 as a result of that exposure. Since we are interested in undetected COVID-19, we assume no person has developed symptoms (which would warrant further investigation) and that everyone was tested on a given day, and all tested negative.
Access chemical, hazard, bioactivity, and exposure data from the Computational Toxicology and Exposure ('CTX') APIs <https://www.epa.gov/comptox-tools/computational-toxicology-and-exposure-apis>. ctxR was developed to streamline the process of accessing the information available through the CTX APIs without requiring prior knowledge of how to use APIs. Most data is also available on the CompTox Chemical Dashboard ('CCD') <https://comptox.epa.gov/dashboard/> and other resources found at the EPA Computational Toxicology and Exposure Online Resources <https://www.epa.gov/comptox-tools>.
Create an addin in Rstudio to do fill-in-the-middle (FIM) and chat with latest Mistral AI models for coding, Codestral and Codestral Mamba'. For more details about Mistral AI API': <https://docs.mistral.ai/getting-started/quickstart/> and <https://docs.mistral.ai/api/>. For more details about Codestral model: <https://mistral.ai/news/codestral>; about Codestral Mamba': <https://mistral.ai/news/codestral-mamba>.
This package implements the Bayesian calibration model described in Pratola and Chkrebtii (2018) <DOI:10.5705/ss.202016.0403> for stochastic and deterministic simulators. Additive and multiplicative discrepancy models are currently supported. See <http://www.matthewpratola.com/software> for more information and examples.
This package implements Monte Carlo conditional inference for the parameters of a linear nonnormal regression model.
Convert BCD (raw bytes) to decimal numbers and vice versa. BCD format is used to preserve decimals exactly, as opposed to the binary rounding errors inherent in "numeric" or "floating-point" formats.
This package performs forward and backwards stepwise regression for the Proportional subdistribution hazards model in competing risks (Fine & Gray 1999). Procedure uses AIC, BIC and BICcr as selection criteria. BICcr has a penalty of k = log(n*), where n* is the number of primary events.
The CalMaTe method calibrates preprocessed allele-specific copy number estimates (ASCNs) from DNA microarrays by controlling for single-nucleotide polymorphism-specific allelic crosstalk. The resulting ASCNs are on average more accurate, which increases the power of segmentation methods for detecting changes between copy number states in tumor studies including copy neutral loss of heterozygosity. CalMaTe applies to any ASCNs regardless of preprocessing method and microarray technology, e.g. Affymetrix and Illumina.
This package provides a helpful R6 class and methods for interacting with the Posit Connect Server API along with some meaningful utility functions for regular tasks. API documentation varies by Posit Connect installation and version, but the latest documentation is also hosted publicly at <https://docs.posit.co/connect/api/>.
Conditional graphical lasso estimator is an extension of the graphical lasso proposed to estimate the conditional dependence structure of a set of p response variables given q predictors. This package provides suitable extensions developed to study datasets with censored and/or missing values. Standard conditional graphical lasso is available as a special case. Furthermore, the package provides an integrated set of core routines for visualization, analysis, and simulation of datasets with censored and/or missing values drawn from a Gaussian graphical model. Details about the implemented models can be found in Augugliaro et al. (2023) <doi: 10.18637/jss.v105.i01>, Augugliaro et al. (2020b) <doi: 10.1007/s11222-020-09945-7>, Augugliaro et al. (2020a) <doi: 10.1093/biostatistics/kxy043>, Yin et al. (2001) <doi: 10.1214/11-AOAS494> and Stadler et al. (2012) <doi: 10.1007/s11222-010-9219-7>.
Modeling periodic mortality (or other time-to event) processes from right-censored data. Given observations of a process with a known period (e.g. 365 days, 24 hours), functions determine the number, intensity, timing, and duration of peaks of periods of elevated hazard within a period. The underlying model is a mixed wrapped Cauchy function fitted using maximum likelihoods (details in Gurarie et al. (2020) <doi:10.1111/2041-210X.13305>). The development of these tools was motivated by the strongly seasonal mortality patterns observed in many wild animal populations. Thus, the respective periods of higher mortality can be identified as "mortality seasons".
Estimates a lasso penalized precision matrix via the blockwise coordinate descent (BCD). This package is a simple wrapper around the popular glasso package that extends and enhances its capabilities. These enhancements include built-in cross validation and visualizations. See Friedman et al (2008) <doi:10.1093/biostatistics/kxm045> for details regarding the estimation method.
This package provides a very simple syntax for the user to generate custom plot(s) without having to remember complicated ggplot2 syntax. The chartql package uses ggplot2 and manages all the syntax complexities internally. As an example, to generate a bar chart of company sales faceted by product category further faceted by season of the year, we simply write: "CHART bar X category, season Y sales".
This package provides functions for computing the one-sided p-values of the Cochran-Armitage trend test statistic for the asymptotic and the exact conditional test. The computation of the p-value for the exact test is performed using an algorithm following an idea by Mehta, et al. (1992) <doi:10.2307/1390598>.
Tests on properties of space-time covariance functions. Tests on symmetry, separability and for assessing different forms of non-separability are available. Moreover tests on some classes of covariance functions, such that the classes of product-sum models, Gneiting models and integrated product models have been provided. It is the companion R package to the papers of Cappello, C., De Iaco, S., Posa, D., 2018, Testing the type of non-separability and some classes of space-time covariance function models <doi:10.1007/s00477-017-1472-2> and Cappello, C., De Iaco, S., Posa, D., 2020, covatest: an R package for selecting a class of space-time covariance functions <doi:10.18637/jss.v094.i01>.
This package provides a device closing function which is able to crop graphics (e.g., PDF, PNG files) on Unix-like operating systems with the required underlying command-line tools installed.
Computes conditional multivariate t probabilities, random deviates, and densities. It can also be used to create missing values at random in a dataset, resulting in a missing at random (MAR) mechanism. Inbuilt in the package are the Expectation-Maximization (EM), Monte Carlo EM, and Stochastic EM algorithms for imputation of missing values in datasets assuming the multivariate t distribution. See Kinyanjui, Tamba, Orawo, and Okenye (2020)<doi:10.3233/mas-200493>, and Kinyanjui, Tamba, and Okenye(2021)<http://www.ceser.in/ceserp/index.php/ijamas/article/view/6726/0> for more details.
Simulation of the stochastic 3D structure model for the nanoporous binder-conductive additive phase in battery cathodes introduced in P. Gräfensteiner, M. Osenberg, A. Hilger, N. Bohn, J. R. Binder, I. Manke, V. Schmidt, M. Neumann (2024) <doi:10.48550/arXiv.2409.11080>. The model is developed for a binder-conductive additive phase of consisting of carbon black, polyvinylidene difluoride binder and graphite particles. For its stochastic 3D modeling, a three-step procedure based on methods from stochastic geometry is used. First, the graphite particles are described by a Boolean model with ellipsoidal grains. Second, the mixture of carbon black and binder is modeled by an excursion set of a Gaussian random field in the complement of the graphite particles. Third, large pore regions within the mixture of carbon black and binder are described by a Boolean model with spherical grains.
This package creates multi-label cell-types for single-cell RNA-sequencing data based on weighted VAM scoring of cell-type specific gene sets. Schiebout, Frost (2022) <https://psb.stanford.edu/psb-online/proceedings/psb22/schiebout.pdf>.