Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides functions to enumerate and reference figures, tables and equations in R Markdown documents that do not support these features (thus not bookdown or quarto'. Supporting functions for using Sweave and Knitr with LyX'.
This package provides standardized effect decomposition (direct, indirect, and total effects) for three major structural equation modeling frameworks: lavaan', piecewiseSEM', and plspm'. Automatically handles zero-effect variables, generates publication-ready ggplot2 visualizations, and returns both wide-format and long-format effect tables. Supports effect filtering, multi-model object inputs, and customizable visualization parameters. For a general overview of the methods used in this package, see Rosseel (2012) <doi:10.18637/jss.v048.i02> and Lefcheck (2016) <doi:10.1111/2041-210X.12512>.
The goal of statcodelists is to promote the reuse and exchange of statistical information and related metadata with making the internationally standardized SDMX code lists available for the R user. SDMX has been published as an ISO International Standard (ISO 17369). The metadata definitions, including the codelists are updated regularly according to the standard. The authoritative version of the code lists made available in this package is <https://sdmx.org/?page_id=3215/>.
This package provides a tool that makes estimating models in state space form a breeze. See "Time Series Analysis by State Space Methods" by Durbin and Koopman (2012, ISBN: 978-0-19-964117-8) for details about the algorithms implemented.
Fits linear difference-in-differences models in scenarios where intervention roll-outs are staggered over time. The package implements a version of an approach proposed by Sun and Abraham (2021) <doi:10.1016/j.jeconom.2020.09.006> to estimate cohort- and time-since-treatment specific difference-in-differences parameters, and it provides convenience functions both for specifying the model and for flexibly aggregating coefficients to answer a variety of research questions.
This tool fits a non-parametric Bayesian model called a "hierarchically coupled mixture model with local dependence (HCMM-LD)" to the original microdata in order to generate synthetic microdata for privacy protection. The non-parametric feature of the adopted model is useful for capturing the joint distribution of the original input data in a highly flexible manner, leading to the generation of synthetic data whose distributional features are similar to that of the input data. The package allows the original input data to have missing values and impute them with the posterior predictive distribution, so no missing values exist in the synthetic data output. The method builds on the work of Murray and Reiter (2016) <doi:10.1080/01621459.2016.1174132>.
This package provides two main functionalities. 1 - Given a system of simultaneous equation, it decomposes the matrix of coefficients weighting the endogenous variables into three submatrices: one includes the subset of coefficients that have a causal nature in the model, two include the subset of coefficients that have a interdependent nature in the model, either at systematic level or induced by the correlation between error terms. 2 - Given a decomposed model, it tests for the significance of the interdependent relationships acting in the system, via Maximum likelihood and Wald test, which can be built starting from the function output. For theoretical reference see Faliva (1992) <doi:10.1007/BF02589085> and Faliva and Zoia (1994) <doi:10.1007/BF02589041>.
This package provides several functions and datasets for area level of Small Area Estimation under Spatial Model using Hierarchical Bayesian (HB) Method. Model-based estimators include the HB estimators based on a Spatial Fay-Herriot model with univariate normal distribution for variable of interest.The rjags package is employed to obtain parameter estimates. For the reference, see Rao and Molina (2015) <doi:10.1002/9781118735855>.
This package provides functions for making particle-size analysis. Sieve tests are widely used to obtain particle-size distribution of powders or granular materials.
Sample size and effect size calculations for survival endpoints based on mixture survival-by-response model. The methods implemented can be found in Bofill, Shen & Gómez (2021) <arXiv:2008.12887>.
Integrating a stratified structure in the population in a sampling design can considerably reduce the variance of the Horvitz-Thompson estimator. We propose in this package different methods to handle the selection of a balanced sample in stratified population. For more details see Raphaël Jauslin, Esther Eustache and Yves Tillé (2021) <doi:10.1007/s42081-021-00134-y>. The package propose also a method based on optimal transport and balanced sampling, see Raphaël Jauslin and Yves Tillé <doi:10.1016/j.jspi.2022.12.003>.
This package provides functions for conducting jackknife Euclidean / empirical likelihood inference for Spearman's rho (de Carvalho and Marques (2012) <doi:10.1080/10920277.2012.10597644>).
Identifies a bicluster, a submatrix of the data such that the features and observations within the submatrix differ from those not contained in submatrix, using a two-step method. In the first step, observations in the bicluster are identified to maximize the sum of weighted between cluster feature differences. The method is described in Helgeson et al. (2020) <doi:10.1111/biom.13136>. SCBiclust can be used to identify biclusters which differ based on feature means, feature variances, or more general differences.
Bayesian clustering of spatial regions with similar functional shapes using spanning trees and latent Gaussian models. The method enforces spatial contiguity within clusters and supports a wide range of latent Gaussian models, including non-Gaussian likelihoods, via the R-INLA framework. The algorithm is based on Zhong, R., Chacón-Montalván, E. A., and Moraga, P. (2024) <doi:10.48550/arXiv.2407.12633>, extending the approach of Zhang, B., Sang, H., Luo, Z. T., and Huang, H. (2023) <doi:10.1214/22-AOAS1643>. The package includes tools for model fitting, convergence diagnostics, visualization, and summarization of clustering results.
Perform the balanced (Scott and Knott, 1974) and unbalanced <doi:10.1590/1984-70332017v17n1a1> Scott & Knott algorithm.
Allows users to produce diagnostic procedures and graphic tools for the evaluation of Small Area estimators.
This package provides ggplot2 extensions to construct glyph-maps for visualizing seasonality in spatiotemporal data. See the Journal of Statistical Software reference: Zhang, H. S., Cook, D., Laa, U., Langrené, N., & Menéndez, P. (2024) <doi:10.18637/jss.v110.i07>. The manuscript for this package is currently under preparation and can be found on GitHub at <https://github.com/maliny12/paper-sugarglider>.
This package provides an imputation pipeline for single-cell RNA sequencing data. The scISR method uses a hypothesis-testing technique to identify zero-valued entries that are most likely affected by dropout events and estimates the dropout values using a subspace regression model (Tran et.al. (2022) <DOI:10.1038/s41598-022-06500-4>).
Allows to retrieve time series of all indicators available in the Bank of Mexico's Economic Information System (<http://www.banxico.org.mx/SieInternet/>).
This package provides a computing tool is developed to automated identify somatic mutation-driven immune cells. The operation modes including: i) inferring the relative abundance matrix of tumor-infiltrating immune cells and integrating it with a particular gene mutation status, ii) detecting differential immune cells with respect to the gene mutation status and converting the abundance matrix of significant differential immune cell into two binary matrices (one for up-regulated and one for down-regulated), iii) identifying somatic mutation-driven immune cells by comparing the gene mutation status with each immune cell in the binary matrices across all samples, and iv) visualization of immune cell abundance of samples in different mutation status..
Assigns a score projection from 0 to 1 between a given in vivo stage and each single cluster from an in vitro dataset. The score is assigned based on the the fraction of specific markers of the in vivo stage that are conserved in the in vitro clusters <https://github.com/ScialdoneLab>.
This package provides a consistently well behaved method of interpolation based on piecewise rational functions using Stineman's algorithm.
An R-package for Estimating Semiparametric PH and AFT Mixture Cure Models.
Spatial forecast verification refers to verifying weather forecasts when the verification set (forecast and observations) is on a spatial field, usually a high-resolution gridded spatial field. Most of the functions here require the forecast and observed fields to be gridded and on the same grid. For a thorough review of most of the methods in this package, please see Gilleland et al. (2009) <doi: 10.1175/2009WAF2222269.1> and for a tutorial on some of the main functions available here, see Gilleland (2022) <doi: 10.5065/4px3-5a05>.