Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides functions read a dataframe containing one or more International Classification of Diseases Tenth Revision codes per subject. They return original data with injury categorizations and severity scores added.
Improved methods based on inverse probability weighting and outcome regression for causal inference and missing data problems.
Analyzing Inductively Coupled Plasma - Mass Spectrometry (ICP-MS) measurement data to evaluate isotope ratios (IRs) is a complex process. The IsoCor package facilitates this process and renders it reproducible by providing a function to run a Shiny'-App locally in any web browser. In this App the user can upload data files of various formats, select ion traces, apply peak detection and perform calculation of IRs and delta values. Results are provided as figures and tables and can be exported. The App, therefore, facilitates data processing of ICP-MS experiments to quickly obtain optimal processing parameters compared to traditional Excel worksheet based approaches. A more detailed description can be found in the corresponding article <doi:10.1039/D2JA00208F>. The most recent version of IsoCor can be tested online at <https://apps.bam.de/shn00/IsoCor/>.
Ternary plots made simple. This package allows to create ternary plots using graphics'. It provides functions to display the data in the ternary space, to add or tune graphical elements and to display statistical summaries. It also includes common ternary diagrams which are useful for the archaeologist (e.g. soil texture charts, ceramic phase diagram).
We provide the collection of data-sets used in the book An Introduction to Statistical Learning with Applications in R, Second Edition'. These include many data-sets that we used in the first edition (some with minor changes), and some new datasets.
This package provides a joint mixture model has been developed by Majumdar et al. (2025) <doi:10.48550/arXiv.2412.17511> that integrates information from gene expression data and methylation data at the modelling stage to capture their inherent dependency structure, enabling simultaneous identification of differentially methylated cytosine-guanine dinucleotide (CpG) sites and differentially expressed genes. The model leverages a joint likelihood function that accounts for the nested structure in the data, with parameter estimation performed using an expectation-maximisation algorithm.
Estimates weights to make a continuous-valued exposure statistically independent of a vector of pre-treatment covariates using the method proposed in Huling, Greifer, and Chen (2021) <arxiv:2107.07086>.
Contain code to work with a C struct, in short cgeneric, to define a Gaussian Markov random (GMRF) model. The cgeneric contain code to specify GMRF elements such as the graph and the precision matrix, and also the initial and prior for its parameters, useful for model inference. It can be accessed from a C program and is the recommended way to implement new GMRF models in the INLA package (<https://www.r-inla.org>). The INLAtools implement functions to evaluate each one of the model specifications from R. The implemented functionalities leverage the use of cgeneric models and provide a way to debug the code as well to work with the prior for the model parameters and to sample from it. A very useful functionality is the Kronecker product method that creates a new model from multiple cgeneric models. It also works with the rgeneric, the R version of the cgeneric intended to easy try implementation of new GMRF models. The Kronecker between two cgeneric models was used in Sterrantino et. al. (2024) <doi:10.1007/s10260-025-00788-y>, and can be used to build the spatio-temporal intrinsic interaction models for what the needed constraints are automatically set.
Utility functions that implement and automate common sets of validation tasks. These functions are particularly useful to validate inputs, intermediate objects and output values in user-defined functions, resulting in tidier and less verbose functions.
Develops stochastic models based on the Theory of Island Biogeography (TIB) of MacArthur and Wilson (1967) <doi:10.1023/A:1016393430551> and extensions. It implements methods to estimate colonization and extinction rates (including environmental variables) given presence-absence data, simulates community assembly, and performs model selection.
Currently using the proportional hazards (PH) model. More methods under other semiparametric regression models will be included in later versions.
This package implements the conditional inference forest approach to modeling interval-censored survival data. It also provides functions to tune the parameters and evaluate the model fit. See Yao et al. (2019) <arXiv:1901.04599>.
This package provides API access to the <http://imdbapi.net> which maintains metadata about movies, games and television shows through a public API.
Reverse engineer a regular expression pattern for the characters contained in an R object. Individual characters can be categorised into digits, letters, punctuation or spaces and encoded into run-lengths. This can be used to summarise the structure of a dataset or identify non-standard entries. Many non-character inputs such as numeric vectors and data frames are supported.
Intervention analysis is used to investigate structural changes in data resulting from external events. Traditional time series intervention models, viz. Autoregressive Integrated Moving Average model with exogeneous variables (ARIMA-X) and Artificial Neural Networks with exogeneous variables (ANN-X), rely on linear intervention functions such as step or ramp functions, or their combinations. In this package, the Gompertz, Logistic, Monomolecular, Richard and Hoerl function have been used as non-linear intervention function. The equation of the above models are represented as: Gompertz: A * exp(-B * exp(-k * t)); Logistic: K / (1 + ((K - N0) / N0) * exp(-r * t)); Monomolecular: A * exp(-k * t); Richard: A + (K - A) / (1 + exp(-B * (C - t)))^(1/beta) and Hoerl: a*(b^t)*(t^c).This package introduced algorithm for time series intervention analysis employing ARIMA and ANN models with a non-linear intervention function. This package has been developed using algorithm of Yeasin et al. <doi:10.1016/j.hazadv.2023.100325> and Paul and Yeasin <doi:10.1371/journal.pone.0272999>.
Simple handling of survey data. Smart handling of meta-information like e.g. variable-labels value-labels and scale-levels. Easy access and validation of meta-information. Useage of value labels and values respectively for subsetting and recoding data.
Identify Cancer Dysfunctional Sub-pathway by integrating gene expression, DNA methylation and copy number variation, and pathway topological information. 1)We firstly calculate the gene risk scores by integrating three kinds of data: DNA methylation, copy number variation, and gene expression. 2)Secondly, we perform a greedy search algorithm to identify the key dysfunctional sub-pathways within the pathways for which the discriminative scores were locally maximal. 3)Finally, the permutation test was used to calculate statistical significance level for these key dysfunctional sub-pathways.
Call wrappers for Istanbul Metropolitan Municipality's Open Data Portal (Turkish: İstanbul BüyükŠehir Belediyesi Açık Veri Portalı) at <https://data.ibb.gov.tr/en/>.
This package provides efficient implementation of the Isolate-Detect methodology for the consistent estimation of the number and location of multiple change-points in one-dimensional data sequences from the "deterministic + noise" model. For details on the Isolate-Detect methodology, please see Anastasiou and Fryzlewicz (2018) <https://docs.wixstatic.com/ugd/24cdcc_6a0866c574654163b8255e272bc0001b.pdf>. Currently implemented scenarios are: piecewise-constant signal with Gaussian noise, piecewise-constant signal with heavy-tailed noise, continuous piecewise-linear signal with Gaussian noise, continuous piecewise-linear signal with heavy-tailed noise.
Pre-processing and basic analytical tasks for working with Eurostat's symmetric inputâ output tables, and basic inputâ output economics calculations. Part of rOpenGov <https://ropengov.github.io/> for open source open government initiatives.
This package provides a suite for identifying causal models using relative concordances and identifying causal polymorphisms in case-control genetic association data, especially with large controls re-sequenced data.
Estimate confidence intervals for mean, proportion, mean difference for unpaired and paired samples and proportion difference. Plot the confidence intervals. Generate documents explaining the statistical result step by step.
Fit Spatial Econometrics models using Bayesian model averaging on models fitted with INLA. The INLA package can be obtained from <https://www.r-inla.org>.
Some functions for performing ICA, MICA, Group ICA, and Multilinear ICA are implemented. ICA, MICA/Group ICA, and Multilinear ICA extract statistically independent components from single matrix, multiple matrices, and single tensor, respectively. For the details of these methods, see the reference section of GitHub README.md <https://github.com/rikenbit/iTensor>.