Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides functions that allow for accessing domains and a number of search engines.
Data from the United Nation's World Population Prospects 2012.
Package to read Empatica E4, Embrace Plus, and Nowatch data, perform several transformations, perform signal processing and analyses, including batch analyses.
Conducts a goodness-of-fit test for the Weibull distribution (referred to as the weibullness test) and furnishes parameter estimations for both the two-parameter and three-parameter Weibull distributions. Notably, the threshold parameter is derived through correlation from the Weibull plot. Additionally, this package conducts goodness-of-fit assessments for the exponential, Gumbel, and inverse Weibull distributions, accompanied by parameter estimations. For more details, see Park (2017) <doi:10.23055/ijietap.2017.24.4.2848>, Park (2018) <doi:10.1155/2018/6056975>, and Park (2023) <doi:10.3390/math11143156>. This work was supported by the National Research Foundation of Korea (NRF) grants funded by the Korea government (MSIT) (No. 2022R1A2C1091319, RS-2023-00242528).
Evaluation of prediction performance of smaller regions of spectra for Chemometrics. Segmentation of spectra, evolving dimensions regions and sliding windows as selection methods. Election of the best model among those computed based on error metrics. Chen et al.(2017) <doi:10.1007/s00216-017-0218-9>.
Serves for rendering MS Word documents with R inline code and inserting tables and plots.
This package provides tools for fitting and simulating mixtures of Watson distributions. The package is described in Sablica, Hornik and Leydold (2026) <doi:10.18637/jss.v115.i04>. The random sampling scheme of the package offers two sampling algorithms that are based of the results of Sablica, Hornik and Leydold (2022) <doi:10.1080/10618600.2024.2416521>. What is more, the package offers a smart tool to combine these two methods, and based on the selected parameters, it approximates the relative sampling speed for both methods and picks the faster one. In addition, the package offers a fitting function for the mixtures of Watson distribution, that uses the expectation-maximization (EM) algorithm. Special features are the possibility to use multiple variants of the E-step and M-step, sparse matrices for the data representation and state of the art methods for numerical evaluation of needed special functions using the results of Sablica and Hornik (2022) <doi:10.1090/mcom/3690> and Sablica and Hornik (2024) <doi:10.1016/j.jmaa.2024.128262>.
This package provides a wrapper for the MediaWiki API, aimed particularly at the Wikimedia production wikis, such as Wikipedia. It can be used to retrieve page text, information about users or the history of pages, and elements of the category tree.
This package provides automated downloading, parsing and formatting of weather data for Australia through API endpoints provided by the Department of Primary Industries and Regional Development (DPIRD) of Western Australia and by the Science and Technology Division of the Queensland Government's Department of Environment and Science (DES). As well as the Bureau of Meteorology (BOM) of the Australian government precis and coastal forecasts, and downloading and importing radar and satellite imagery files. DPIRD weather data are accessed through public APIs provided by DPIRD, <https://www.dpird.wa.gov.au/online-tools/apis/>, providing access to weather station data from the DPIRD weather station network. Australia-wide weather data are based on data from the Australian Bureau of Meteorology (BOM) data and accessed through SILO (Scientific Information for Land Owners) Jeffrey et al. (2001) <doi:10.1016/S1364-8152(01)00008-1>. DPIRD data are made available under a Creative Commons Attribution 3.0 Licence (CC BY 3.0 AU) license <https://creativecommons.org/licenses/by/3.0/au/deed.en>. SILO data are released under a Creative Commons Attribution 4.0 International licence (CC BY 4.0) <https://creativecommons.org/licenses/by/4.0/>. BOM data are (c) Australian Government Bureau of Meteorology and released under a Creative Commons (CC) Attribution 3.0 licence or Public Access Licence (PAL) as appropriate, see <http://www.bom.gov.au/other/copyright.shtml> for further details.
Infectious disease surveillance requires early outbreak detection. This package provides statistical tools for analyzing time-series monitoring data through three core methods: a) EWMA (Exponentially Weighted Moving Average) b) Modified-CUSUM (Modified Cumulative Sum) c) Adjusted-Serfling models Methodologies are based on: - Wang et al. (2010) <doi:10.1016/j.jbi.2009.08.003> - Wang et al. (2015) <doi:10.1371/journal.pone.0119923> Designed for epidemiologists and public health researchers working with disease surveillance systems.
The weighted ensemble method is a valuable approach for combining forecasts. This algorithm employs several optimization techniques to generate optimized weights. This package has been developed using algorithm of Armstrong (1989) <doi:10.1016/0024-6301(90)90317-W>.
This package provides a toolbox of common robust statistical tests, including robust descriptives, robust t-tests, and robust ANOVA. It is also available as a module for jamovi (see <https://www.jamovi.org> for more information). Walrus is based on the WRS2 package by Patrick Mair, which is in turn based on the scripts and work of Rand Wilcox. These analyses are described in depth in the book Introduction to Robust Estimation & Hypothesis Testing'.
Book is "Linear Mixed Models: A Practical Guide Using Statistical Software" published in 2006 by Chapman Hall / CRC Press.
Obtain information on peak flow data from the National River Flow Archive (NRFA) in the United Kingdom, either from the Peak Flow Dataset files <https://nrfa.ceh.ac.uk/data/peak-flow-dataset> once these have been downloaded to the user's computer or using the NRFA's API. These files are in a format suitable for direct use in the WINFAP software, hence the name of the package.
List of english scrabble words as listed in the OTCWL2014 <https://www.scrabbleplayers.org/w/Official_Tournament_and_Club_Word_List_2014_Edition>. Words are collated from the Word Game Dictionary <https://www.wordgamedictionary.com/word-lists/>.
This package provides a powerful yet simple graphical tool available in the field of psychometrics is the Wright Map (also known as item maps or item-person maps), which presents the location of both respondents and items on the same scale. Wright Maps are commonly used to present the results of dichotomous or polytomous item response models. The WrightMap package provides functions to create these plots from item parameters and person estimates stored as R objects. Although the package can be used in conjunction with any software used to estimate the IRT model (e.g. TAM', mirt', eRm or IRToys in R', or Stata', Mplus', etc.), WrightMap features special integration with ConQuest to facilitate reading and plotting its output directly.The wrightMap function creates Wright Maps based on person estimates and item parameters produced by an item response analysis. The CQmodel function reads output files created using ConQuest software and creates a set of data frames for easy data manipulation, bundled in a CQmodel object. The wrightMap function can take a CQmodel object as input or it can be used to create Wright Maps directly from data frames of person and item parameters.
Search and download data from over 40 databases hosted by the World Bank, including the World Development Indicators ('WDI'), International Debt Statistics, Doing Business, Human Capital Index, and Sub-national Poverty indicators.
This package provides a wavelet-based LSTM model is a type of neural network architecture that uses wavelet technique to pre-process the input data before passing it through a Long Short-Term Memory (LSTM) network. The wavelet-based LSTM model is a powerful approach that combines the benefits of wavelet analysis and LSTM networks to improve the accuracy of predictions in various applications. This package has been developed using the algorithm of Anjoy and Paul (2017) and Paul and Garai (2021) <DOI:10.1007/s00521-017-3289-9> <doi:10.1007/s00500-021-06087-4>.
This package provides a multivariate weather generator for daily climate variables based on weather-states (Flecher et al. (2010) <doi:10.1029/2009WR008098>). It uses a Markov chain for modeling the succession of weather states. Conditionally to the weather states, the multivariate variables are modeled using the family of Complete Skew-Normal distributions. Parameters are estimated on measured series. Must include the variable Rain and can accept as many other variables as desired.
This package provides a toolkit to detect clusters from distance matrices. The distance matrices are assumed to be calculated between the cells of multiple animals ('Caenorhabditis elegans') from input time-series matrices. Some functions for generating distance matrices, performing clustering, evaluating the clustering, and visualizing the results of clustering and evaluation are available. We're also providing the download function to retrieve the calculated distance matrices from figshare <https://figshare.com>.
The outcome of various rehabilitation strategies for water distribution systems can be modeled with the Water Management Simulator (WaMaSim). Pipe breaks and the corresponding damage and rehabilitation costs are simulated. It is mainly intended to be used as educational tool for the Water Infrastructure Experimental and Computer Laboratory at ETH Zurich, Switzerland.
Set of functions that improves the graphical presentations of the functions: wave.correlation and spin.correlation (waveslim package, Whitcher 2012) and the wave.multiple.correlation and wave.multiple.cross.correlation (wavemulcor package, Fernandez-Macho 2012b). The plot outputs (heatmaps) can be displayed in the screen or can be saved as PNG or JPG images or as PDF or EPS formats. The W2CWM2C package also helps to handle the (input data) multivariate time series easily as a list of N elements (times series) and provides a multivariate data set (dataexample) to exemplify its use. A description of the package was published in a scientific paper: Polanco-Martinez and Fernandez-Macho (2014), <doi:10.1109/MCSE.2014.96>.
This package provides a clean syntax for vectorising the use of Non-Standard Evaluation (NSE), for example in ggplot2', dplyr', or data.table'.
Wrap-around Time Series (WATS) plots for interrupted time series designs with seasonal patterns. Longitudinal trajectories are shown in both Cartesian and polar coordinates. In many scenarios, a WATS plot more clearly shows the existence and effect size of of an intervention. This package accompanies "Graphical Data Analysis on the Circle: Wrap-Around Time Series Plots for (Interrupted) Time Series Designs" by Rodgers, Beasley, & Schuelke (2014) <doi:10.1080/00273171.2014.946589>; see citation("Wats") for details.