Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Emulation of an application originally created by Paul Pukite. Computer Aided Rate Modeling and Simulation. Jan Pukite and Paul Pukite, (1998, ISBN 978-0-7803-3482), William J. Stewart, (1994, ISBN: 0-691-03699-3).
Utility functions that help with common base-R problems relating to lists. Lists in base-R are very flexible. This package provides functions to quickly and easily characterize types of lists. That is, to identify if all elements in a list are null, data.frames, lists, or fully named lists. Other functionality is provided for the handling of lists, such as the easy splitting of lists into equally sized groups, and the unnesting of data.frames within fully named lists.
Calculates correlation of variables and displays the results graphically. Included panel functions can display points, shading, ellipses, and correlation values with confidence intervals. See Friendly (2002) <doi:10.1198/000313002533>.
Easy access to data from Brazil's population censuses. The package provides a simple and efficient way to download and read the data sets and the documentation of all the population censuses taken in and after 1960 in the country. The package is built on top of the Arrow platform <https://arrow.apache.org/docs/r/>, which allows users to work with larger-than-memory census data using dplyr familiar functions. <https://arrow.apache.org/docs/r/articles/arrow.html#analyzing-arrow-data-with-dplyr>.
Routines for solving convex optimization problems with cone constraints by means of interior-point methods. The implemented algorithms are partially ported from CVXOPT, a Python module for convex optimization (see <https://cvxopt.org> for more information).
Race results of the Cherry Blossom Run, which is an annual road race that takes place in Washington, DC.
Computes Chernoff's distribution based on the method in Piet Groeneboom & Jon A Wellner (2001) Computing Chernoff's Distribution, Journal of Computational and Graphical Statistics, 10:2, 388-400, <doi:10.1198/10618600152627997>. Chernoff's distribution is defined as the distribution of the maximizer of the two-sided Brownian motion minus quadratic drift. That is, Z = argmax (B(t)-t^2).
This package provides a comprehensive high-level package, for composite indicator construction and analysis. It is a "development environment" for composite indicators and scoreboards, which includes utilities for construction (indicator selection, denomination, imputation, data treatment, normalisation, weighting and aggregation) and analysis (multivariate analysis, correlation plotting, short cuts for principal component analysis, global sensitivity analysis, and more). A composite indicator is completely encapsulated inside a single hierarchical list called a "coin". This allows a fast and efficient work flow, as well as making quick copies, testing methodological variations and making comparisons. It also includes many plotting options, both statistical (scatter plots, distribution plots) as well as for presenting results.
Perform likelihood estimation and corresponding analysis under the copula-based Markov chain model for serially dependent event times with a dependent terminal event. Available are statistical methods in Huang, Wang and Emura (2020, JJSD accepted).
Extensive functions for bivariate copula (bicopula) computations and related operations for bicopula theory. The lower, upper, product, and select other bicopula are implemented along with operations including the diagonal, survival copula, dual of a copula, co-copula, and numerical bicopula density. Level sets, horizontal and vertical sections are supported. Numerical derivatives and inverses of a bicopula are provided through which simulation is implemented. Bicopula composition, convex combination, asymmetry extension, and products also are provided. Support extends to the Kendall Function as well as the Lmoments thereof. Kendall Tau, Spearman Rho and Footrule, Gini Gamma, Blomqvist Beta, Hoeffding Phi, Schweizer- Wolff Sigma, tail dependency, tail order, skewness, and bivariate Lmoments are implemented, and positive/negative quadrant dependency, left (right) increasing (decreasing) are available. Other features include Kullback-Leibler Divergence, Vuong Procedure, spectral measure, and Lcomoments for fit and inference, Lcomoment ratio diagrams, maximum likelihood, and AIC, BIC, and RMSE for goodness-of-fit.
Construct directed graphs of S4 class hierarchies and visualize them. In general, these graphs typically are DAGs (directed acyclic graphs), often simple trees in practice.
Copula-based imputation methods: parametric and nonparametric algorithms for missing multivariate data through conditional copulas.
This package contains the Correlates of State Policy Project dataset (+ codebook) assembled by Marty P. Jordan and Matt Grossmann (2020) <http://ippsr.msu.edu/public-policy/correlates-state-policy> used by the cspp package. The Correlates data contains over 3000 variables across more than 100 years that pertain to state politics and policy in the United States.
This package provides a feasible framework for mutation analysis and reverse transcription polymerase chain reaction (RT-PCR) assay evaluation of COVID-19, including mutation profile visualization, statistics and mutation ratio of each assay. The mutation ratio is conducive to evaluating the coverage of RT-PCR assays in large-sized samples. Mercatelli, D. and Giorgi, F. M. (2020) <doi:10.20944/preprints202004.0529.v1>.
Duplicated publication data (pre-processed and formatted) for entity resolution. This data set contains a total of 1879 records. The following variables are included in the data set: id, title, book title, authors, address, date, year, editor, journal, volume, pages, publisher, institution, type, tech, note. The data set has a respective gold data set that provides information on which records match based on id.
This package provides several functions to identify and analyse miRNA sponge, including popular methods for identifying miRNA sponge interactions, two types of global ceRNA regulation prediction methods and four types of context-specific prediction methods( Li Y et al.(2017) <doi:10.1093/bib/bbx137>), which are based on miRNA-messenger RNA regulation alone, or by integrating heterogeneous data, respectively. In addition, For predictive ceRNA relationship pairs, this package provides several downstream analysis algorithms, including regulatory network analysis and functional annotation analysis, as well as survival prognosis analysis based on expression of ceRNA ternary pair.
Calculation of consensus values for atomic weights, isotope amount ratios, and isotopic abundances with the associated uncertainties using multivariate meta-regression approach for consensus building.
This package performs cryptographic randomness tests on a sequence of random integers or bits. Included tests are greatest common divisor, birthday spacings, book stack, adaptive chi-square, topological binary, and three random walk tests (Ryabko and Monarev, 2005) <doi:10.1016/j.jspi.2004.02.010>. Tests except greatest common divisor and birthday spacings are not covered by standard test suites. In addition to the chi-square goodness-of-fit test, results of Anderson-Darling, Kolmogorov-Smirnov, and Jarque-Bera tests are also generated by some of the cryptographic randomness tests.
The beta-binomial test is used for significance analysis of independent samples by Pham et al. (2010) <doi:10.1093/bioinformatics/btp677>. The inverted beta-binomial test is used for paired sample testing, e.g. pre-treatment and post-treatment data, by Pham and Jimenez (2012) <doi:10.1093/bioinformatics/bts394>.
Designs guide sequences for CRISPR/Cas9 genome editing and provides information on sequence features pertinent to guide efficiency. Sequence features include annotated off-target predictions in a user-selected genome and a predicted efficiency score based on the model described in Doench et al. (2016) <doi:10.1038/nbt.3437>. Users are able to import additional genomes and genome annotation files to use when searching and annotating off-target hits. All guide sequences and off-target data can be generated through the R console with sgRNA_Design() or through crispRdesignR's user interface with crispRdesignRUI(). CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and the associated protein Cas9 refer to a technique used in genome editing.
Gather boxscore and play-by-play data from the Canadian Elite Basketball League (CEBL) <https://www.cebl.ca> to create a repository of basic and advanced statistics for teams and players.
Constrained randomization by Raab and Butcher (2001) <doi:10.1002/1097-0258(20010215)20:3%3C351::AID-SIM797%3E3.0.CO;2-C> is suitable for cluster randomized trials (CRTs) with a small number of clusters (e.g., 20 or fewer). The procedure of constrained randomization is based on the baseline values of some cluster-level covariates specified. The intervention effect on the individual outcome can then be analyzed through clustered permutation test introduced by Gail, et al. (1996) <doi:10.1002/(SICI)1097-0258(19960615)15:11%3C1069::AID-SIM220%3E3.0.CO;2-Q>. Motivated from Li, et al. (2016) <doi:10.1002/sim.7410>, the package performs constrained randomization on the baseline values of cluster-level covariates and clustered permutation test on the individual-level outcomes for cluster randomized trials.
CODATA internationally recommended values of the fundamental physical constants, provided as symbols for direct use within the R language. Optionally, the values with uncertainties and/or units are also provided if the errors', units and/or quantities packages are installed. The Committee on Data for Science and Technology (CODATA) is an interdisciplinary committee of the International Council for Science which periodically provides the internationally accepted set of values of the fundamental physical constants. This package contains the "2022 CODATA" version, published on May 2024: Eite Tiesinga, Peter J. Mohr, David B. Newell, and Barry N. Taylor (2024) <https://physics.nist.gov/cuu/Constants/>.
This package provides tools for penalized estimation of flexible hidden Markov models for time series of counts w/o the need to specify a (parametric) family of distributions. These include functions for model fitting, model checking, and state decoding. For details, see Adam, T., Langrock, R., and WeiĆ , C.H. (2019): Penalized Estimation of Flexible Hidden Markov Models for Time Series of Counts. <arXiv:1901.03275>.