Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides functionality to run a number of tasks in the differential expression analysis workflow. This encompasses the most widely used steps, from running various enrichment analysis tools with a unified interface to creating plots and beautifying table components linking to external websites and databases. This streamlines the generation of comprehensive analysis reports.
The canonical way to perform meta-analysis involves using effect sizes. When they are not available this package provides a number of methods for meta-analysis of significance values including the methods of Edgington, Fisher, Stouffer, Tippett, and Wilkinson; a number of data-sets to replicate published results; and a routine for graphical display.
CelliD is a clustering-free method for extracting per-cell gene signatures from scRNA-seq. CelliD allows unbiased cell identity recognition across different donors, tissues-of-origin, model organisms and single-cell omics protocols. The package can also be used to explore functional pathways enrichment in single cell data.
This package provides full genome sequences for Mus musculus (Mouse) as provided by UCSC (mm9, July 2007) and stored in Biostrings objects.
Bacon can be used to remove inflation and bias often observed in epigenome- and transcriptome-wide association studies. To this end bacon constructs an empirical null distribution using a Gibbs Sampling algorithm by fitting a three-component normal mixture on z-scores.
This package annmap provides annotation mappings for Affymetrix exon arrays and coordinate based queries to support deep sequencing data analysis. Database access is hidden behind the API which provides a set of functions such as genesInRange(), geneToExon(), exonDetails(), etc. Functions to plot gene architecture and BAM file data are also provided.
The standard index of DNA methylation (beta) is computed from methylated and unmethylated signal intensities. Betas calculated from raw signal intensities perform well, but using 11 methylomic datasets we demonstrate that quantile normalization methods produce marked improvement. The commonly used procedure of normalizing betas is inferior to the separate normalization of M and U, and it is also advantageous to normalize Type I and Type II assays separately. This package provides 15 flavours of betas and three performance metrics, with methods for objects produced by the methylumi and minfi packages.
This package ADAMgui is a graphical user interface (GUI) for the ADAM package. The ADAMgui package provides two shiny-based applications that allows the user to study the output of the ADAM package files through different plots. It's possible, for example, to choose a specific group of functionally associated genes (GFAG) and observe the gene expression behavior with the plots created with the GFAGtargetUi function. Features such as differential expression and fold change can be easily seen with aid of the plots made with the GFAGpathUi function.
This package provides high level functions for reading Affy .CEL files, phenotypic data, and then computing simple things with it, such as t-tests, fold changes and the like. It makes heavy use of the affy library. It also has some basic scatter plot functions and mechanisms for generating high resolution journal figures.
Lefser is an implementation in R of the popular "LDA Effect Size" (LEfSe) method for microbiome biomarker discovery. It uses the Kruskal-Wallis test, Wilcoxon-Rank Sum test, and Linear Discriminant Analysis to find biomarkers of groups and sub-groups.
This package implements a variety of methods for batch correction of single-cell (RNA sequencing) data. This includes methods based on detecting mutually nearest neighbors, as well as several efficient variants of linear regression of the log-expression values. Functions are also provided to perform global rescaling to remove differences in depth between batches, and to perform a principal components analysis that is robust to differences in the numbers of cells across batches.
This package provides an expressionSet containing gene expression data from 60 bone marrow samples of patients with one of the four main types of leukemia (ALL, AML, CLL, CML) or non-leukemia.
This package uses a Bayesian hierarchical model to detect enriched regions from ChIP-chip experiments. The common goal in analyzing this ChIP-chip data is to detect DNA-protein interactions from ChIP-chip experiments. The BAC package has mainly been tested with Affymetrix tiling array data. However, we expect it to work with other platforms (e.g. Agilent, Nimblegen, cDNA, etc.). Note that BAC does not deal with normalization, so you will have to normalize your data beforehand.
This package implements algorithms for calculating microarray enrichment (ACME), and it is a set of tools for analysing tiling array of combined chromatin immunoprecipitation with DNA microarray (ChIP/chip), DNAse hypersensitivity, or other experiments that result in regions of the genome showing enrichment. It does not rely on a specific array technology (although the array should be a tiling array), is very general (can be applied in experiments resulting in regions of enrichment), and is very insensitive to array noise or normalization methods. It is also very fast and can be applied on whole-genome tiling array experiments quite easily with enough memory.
This is a package for Differential Expression Analysis of RNA-seq data. It features a variance component score test accounting for data heteroscedasticity through precision weights. Perform both gene-wise and gene set analyses, and can deal with repeated or longitudinal data.
BadRegionFinder is a package for identifying regions with a bad, acceptable and good coverage in sequence alignment data available as bam files. The whole genome may be considered as well as a set of target regions. Various visual and textual types of output are available.
This package provides functions for the integrated analysis of protein-protein interaction networks and the detection of functional modules. Different datasets can be integrated into the network by assigning p-values of statistical tests to the nodes of the network. E.g. p-values obtained from the differential expression of the genes from an Affymetrix array are assigned to the nodes of the network. By fitting a beta-uniform mixture model and calculating scores from the p-values, overall scores of network regions can be calculated and an integer linear programming algorithm identifies the maximum scoring subnetwork.
This package provides a one-to-one mapping from gene to "best" probe set for four Affymetrix human gene expression microarrays: hgu95av2, hgu133a, hgu133plus2, and u133x3p. On Affymetrix gene expression microarrays, a single gene may be measured by multiple probe sets. This can present a mild conundrum when attempting to evaluate a gene "signature" that is defined by gene names rather than by specific probe sets. This package also includes the pre-calculated probe set quality scores that were used to define the mapping.
This package provides a set of tools for interacting with GO and microarray data. A variety of basic manipulation tools for graphs, hypothesis testing and other simple calculations.
This package provides a framework for the quantification and analysis of short genomic reads. It covers a complete workflow starting from raw sequence reads, over creation of alignments and quality control plots, to the quantification of genomic regions of interest.
This package expands the usethis package with the goal of helping automate the process of creating R packages for Bioconductor or making them Bioconductor-friendly.
This package exposes an annotation database generated from Ensembl.
The aim of TCGAbiolinks is:
facilitate GDC open-access data retrieval;
prepare the data using the appropriate pre-processing strategies;
provide the means to carry out different standard analyses, and;
to easily reproduce earlier research results.
In more detail, the package provides multiple methods for analysis (e.g., differential expression analysis, identifying differentially methylated regions) and methods for visualization (e.g., survival plots, volcano plots, starburst plots) in order to easily develop complete analysis pipelines.
This package extends beachmat to support initialization of tatami matrices from HDF5-backed arrays. This allows C++ code in downstream packages to directly call the HDF5 C/C++ library to access array data, without the need for block processing via DelayedArray. Some utilities are also provided for direct creation of an in-memory tatami matrix from a HDF5 file.