Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Microbiome time series simulation with generalized Lotka-Volterra model, Self-Organized Instability (SOI), and other models. Hubbell's Neutral model is used to determine the abundance matrix. The resulting abundance matrix is applied to (Tree)SummarizedExperiment objects.
Utility package to facilitate integration and analysis of EBI MGnify data in R. The package can be used to import microbial data for instance into TreeSummarizedExperiment (TreeSE). In TreeSE format, the data is directly compatible with miaverse framework.
This package provides functionality for processing and statistical analysis of multiplexed assays of variant effect (MAVE) and similar data. The package contains functions covering the full workflow from raw FASTQ files to publication-ready visualizations. A broad range of library designs can be processed with a single, unified interface.
MOGAMUN is a multi-objective genetic algorithm that identifies active modules in a multiplex biological network. This allows analyzing different biological networks at the same time. MOGAMUN is based on NSGA-II (Non-Dominated Sorting Genetic Algorithm, version II), which we adapted to work on networks.
This package provides functions for fitting MOSAiCS and MOSAiCS-HMM, a statistical framework to analyze one-sample or two-sample ChIP-seq data of transcription factor binding and histone modification.
MS-based metabolomics data processing and compound annotation pipeline.
MSstatsShiny is an R-Shiny graphical user interface (GUI) integrated with the R packages MSstats, MSstatsTMT, and MSstatsPTM. It provides a point and click end-to-end analysis pipeline applicable to a wide variety of experimental designs. These include data-dependedent acquisitions (DDA) which are label-free or tandem mass tag (TMT)-based, as well as DIA, SRM, and PRM acquisitions and those targeting post-translational modifications (PTMs). The application automatically saves users selections and builds an R script that recreates their analysis, supporting reproducible data analysis.
MBttest method was developed from beta t-test method of Baggerly et al(2003). Compared to baySeq (Hard castle and Kelly 2010), DESeq (Anders and Huber 2010) and exact test (Robinson and Smyth 2007, 2008) and the GLM of McCarthy et al(2012), MBttest is of high work efficiency,that is, it has high power, high conservativeness of FDR estimation and high stability. MBttest is suit- able to transcriptomic data, tag data, SAGE data (count data) from small samples or a few replicate libraries. It can be used to identify genes, mRNA isoforms or tags differentially expressed between two conditions.
Affymetrix Affymetrix MG_U74Cv2 Array annotation data (chip mgu74cv2) assembled using data from public repositories.
MSstatsPTM provides general statistical methods for quantitative characterization of post-translational modifications (PTMs). Supports DDA, DIA, SRM, and tandem mass tag (TMT) labeling. Typically, the analysis involves the quantification of PTM sites (i.e., modified residues) and their corresponding proteins, as well as the integration of the quantification results. MSstatsPTM provides functions for summarization, estimation of PTM site abundance, and detection of changes in PTMs across experimental conditions.
MODA can be used to estimate and construct condition-specific gene co-expression networks, and identify differentially expressed subnetworks as conserved or condition specific modules which are potentially associated with relevant biological processes.
This package allows to estimate chronological and gestational DNA methylation (DNAm) age as well as biological age using different methylation clocks. Chronological DNAm age (in years) : Horvath's clock, Hannum's clock, BNN, Horvath's skin+blood clock, PedBE clock and Wu's clock. Gestational DNAm age : Knight's clock, Bohlin's clock, Mayne's clock and Lee's clocks. Biological DNAm clocks : Levine's clock and Telomere Length's clock.
mitch is an R package for multi-contrast enrichment analysis. At it’s heart, it uses a rank-MANOVA based statistical approach to detect sets of genes that exhibit enrichment in the multidimensional space as compared to the background. The rank-MANOVA concept dates to work by Cox and Mann (https://doi.org/10.1186/1471-2105-13-S16-S12). mitch is useful for pathway analysis of profiling studies with one, two or more contrasts, or in studies with multiple omics profiling, for example proteomic, transcriptomic, epigenomic analysis of the same samples. mitch is perfectly suited for pathway level differential analysis of scRNA-seq data. We have an established routine for pathway enrichment of Infinium Methylation Array data (see vignette). The main strengths of mitch are that it can import datasets easily from many upstream tools and has advanced plotting features to visualise these enrichments.
Estimates gene expressions from several laser scans of the same microarray.
MPRAnalyze provides statistical framework for the analysis of data generated by Massively Parallel Reporter Assays (MPRAs), used to directly measure enhancer activity. MPRAnalyze can be used for quantification of enhancer activity, classification of active enhancers and comparative analyses of enhancer activity between conditions. MPRAnalyze construct a nested pair of generalized linear models (GLMs) to relate the DNA and RNA observations, easily adjustable to various experimental designs and conditions, and provides a set of rigorous statistical testig schemes.
Translating mature miRNA names to different miRBase versions, sequence retrieval, checking names for validity and detecting miRBase version of a given set of names (data from http://www.mirbase.org/).
Example CDF data for the metaMS package.
metaCCA performs multivariate analysis of a single or multiple GWAS based on univariate regression coefficients. It allows multivariate representation of both phenotype and genotype. metaCCA extends the statistical technique of canonical correlation analysis to the setting where original individual-level records are not available, and employs a covariance shrinkage algorithm to achieve robustness.
Raw amplification data from a large microRNA mixture / dilution study. These data are used by the miRcomp package to assess the performance of methods that estimate expression from the amplification curves.
MapScape integrates clonal prevalence, clonal hierarchy, anatomic and mutational information to provide interactive visualization of spatial clonal evolution. There are four inputs to MapScape: (i) the clonal phylogeny, (ii) clonal prevalences, (iii) an image reference, which may be a medical image or drawing and (iv) pixel locations for each sample on the referenced image. Optionally, MapScape can accept a data table of mutations for each clone and their variant allele frequencies in each sample. The output of MapScape consists of a cropped anatomical image surrounded by two representations of each tumour sample. The first, a cellular aggregate, visually displays the prevalence of each clone. The second shows a skeleton of the clonal phylogeny while highlighting only those clones present in the sample. Together, these representations enable the analyst to visualize the distribution of clones throughout anatomic space.
Agilent Chips that use Agilent design number 026655 annotation data (chip MmAgilentDesign026655) assembled using data from public repositories.
This package provides a package containing an environment representing the Mu6500subA.CDF file.
Assorted utilities for multi-modal analyses of single-cell datasets. Includes functions to combine multiple modalities for downstream analysis, perform MNN-based batch correction across multiple modalities, and to compute correlations between assay values for different modalities.
The package conducts pathway testing from untargetted metabolomics data. It requires the user to supply feature-level test results, from case-control testing, regression, or other suitable feature-level tests for the study design. Weights are given to metabolic features based on how many metabolites they could potentially match to. The package can combine positive and negative mode results in pathway tests.