Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Designed to support the application of plant trait data providing easy applicable functions for the basic steps of data preprocessing, e.g. data import, data exploration, selection of columns and rows, excluding trait data according to different attributes, geocoding, long- to wide-table transformation, and data export. rtry was initially developed as part of the TRY R project to preprocess trait data received via the TRY database.
This package performs both classical and robust panel clustering by applying Principal Component Analysis (PCA) for dimensionality reduction and clustering via standard K-Means or Trimmed K-Means. The method is designed to ensure stable and reliable clustering, even in the presence of outliers. Suitable for analyzing panel data in domains such as economic research, financial time-series, healthcare analytics, and social sciences. The package allows users to choose between classical K-Means for standard clustering and Trimmed K-Means for robust clustering, making it a flexible tool for various applications. For this package, we have benefited from the studies Rencher (2003), Wang and Lu (2021) <DOI:10.25236/AJBM.2021.031018>, Cuesta-Albertos et al. (1997) <https://www.jstor.org/stable/2242558?seq=1>.
Implementation of Gibbs sampling algorithm for Bayesian Estimation of the Reduced Reparameterized Unified Model ('rrum'), described by Culpepper and Hudson (2017) <doi: 10.1177/0146621617707511>.
Protocol Buffers are a way of encoding structured data in an efficient yet extensible format. Google uses Protocol Buffers for almost all of its internal RPC protocols and file formats. Additional documentation is available in two included vignettes one of which corresponds to our JSS paper (2016, <doi:10.18637/jss.v071.i02>. A sufficiently recent version of Protocol Buffers library is required; currently version 3.3.0 from 2017 is the stated minimum.
Integrates population dynamics and dispersal into a mechanistic virtual species simulator. The package can be used to study the effects of environmental change on population growth and range shifts. It allows for simple and straightforward definition of population dynamics (including positive density dependence), extensive possibilities for defining dispersal kernels, and the ability to generate virtual ecologist data. Learn more about the rangr at <https://docs.ropensci.org/rangr/>. This work was supported by the National Science Centre, Poland, grant no. 2018/29/B/NZ8/00066 and the PoznaÅ Supercomputing and Networking Centre (grant no. pl0090-01).
Enables Retrieval-Augmented Generation (RAG) workflows in R by combining local vector search using DuckDB with optional web search via the Tavily API. Supports OpenAI'- and Ollama'-compatible embedding models, full-text and HNSW (Hierarchical Navigable Small World) indexing, and modular large language model (LLM) invocation. Designed for advanced question-answering, chat-based applications, and production-ready AI pipelines. This package is the R equivalent of the python package RAGFlowChain available at <https://pypi.org/project/RAGFlowChain/>.
Restricted Cubic Splines were performed to explore the shape of association form of "U, inverted U, L" shape and test linearity or non-linearity base on "Cox,Logistic,linear,quasipoisson" regression, and auto output Restricted Cubic Splines figures. rcssci package could automatically draw RCS graphics with Y-axis "OR,HR,RR,beta". The Restricted Cubic Splines method were based on Suli Huang (2022) <doi:10.1016/j.ecoenv.2022.113183>,Amit Kaura (2019) <doi:10.1136/bmj.l6055>, and Harrell Jr (2015, ISBN:978-3-319-19424-0 (Print) 978-3-319-19425-7 (Online)).
This package provides methods for calculating diversity indices on numerical matrices, based on information theory, following Rocchini, Marcantonio and Ricotta (2017) <doi:10.1016/j.ecolind.2016.07.039> and Rocchini et al. (2021) <doi:10.1101/2021.01.23.427872>.
Implementation of a variety of methods to compute the robustness of ecological interaction networks with binary interactions as described in <doi:10.1002/env.2709>. In particular, using the Stochastic Block Model and its bipartite counterpart, the Latent Block Model to put a parametric model on the network, allows the comparison of the robustness of networks differing in species richness and number of interactions. It also deals with networks that are partially sampled and/or with missing values.
Simulate samples from populations with known covariate distributions, generate response variables according to common linear and generalized linear model families, draw from sampling distributions of regression estimates, and perform visual inference on diagnostics from model fits.
Predicting regulatory DNA elements based on epigenomic signatures. This package is more of a set of building blocks than a direct solution. REPTILE regulatory prediction pipeline is built on this R package. See <https://github.com/yupenghe/REPTILE> for more information.
Finds a robust instrumental variables estimator using a high breakdown point S-estimator of multivariate location and scatter matrix.
Manually bin data using weight of evidence and information value. Includes other binning methods such as equal length, quantile and winsorized. Options for combining levels of categorical data are also available. Dummy variables can be generated based on the bins created using any of the available binning methods. References: Siddiqi, N. (2006) <doi:10.1002/9781119201731.biblio>.
Routines that allow the user to run a large number of goodness-of-fit tests. It allows for data to be continuous or discrete. It includes routines to estimate the power of the tests and display them as a power graph. The routine run.studies allows a user to quickly study the power of a new method and how it compares to some of the standard ones.
Computes a variety of statistics for relational event models. Relational event models enable researchers to investigate both exogenous and endogenous factors influencing the evolution of a time-ordered sequence of events. These models are categorized into tie-oriented models (Butts, C., 2008, <doi:10.1111/j.1467-9531.2008.00203.x>), where the probability of a dyad interacting next is modeled in a single step, and actor-oriented models (Stadtfeld, C., & Block, P., 2017, <doi:10.15195/v4.a14>), which first model the probability of a sender initiating an interaction and subsequently the probability of the sender's choice of receiver. The package is designed to compute a variety of statistics that summarize exogenous and endogenous influences on the event stream for both types of models.
This package provides string arithmetic, reassignment operators, logical operators that handle missing values, and extra logical operators such as floating point equality and all or nothing. The intent is to allow R users to write code that is easier to read, write, and maintain while providing a friendlier experience to new R users from other language backgrounds (such as Python') who are used to concepts such as x += 1 and foo + bar'. Includes operators for not in, easy floating point comparisons, === equivalent, and SQL-like like operations (), etc. We also added in some extra helper functions, such as OS checks, pasting in Oxford comma format, and functions to get the first, last, nth, or most common element of a vector or word in a string.
Allows the user to access functionality in the CDK', a Java framework for cheminformatics. This allows the user to load molecules, evaluate fingerprints, calculate molecular descriptors and so on. In addition, the CDK API allows the user to view structures in 2D.
This package provides methods for analysis of compositional data including robust methods (<doi:10.1007/978-3-319-96422-5>), imputation of missing values (<doi:10.1016/j.csda.2009.11.023>), methods to replace rounded zeros (<doi:10.1080/02664763.2017.1410524>, <doi:10.1016/j.chemolab.2016.04.011>, <doi:10.1016/j.csda.2012.02.012>), count zeros (<doi:10.1177/1471082X14535524>), methods to deal with essential zeros (<doi:10.1080/02664763.2016.1182135>), (robust) outlier detection for compositional data, (robust) principal component analysis for compositional data, (robust) factor analysis for compositional data, (robust) discriminant analysis for compositional data (Fisher rule), robust regression with compositional predictors, functional data analysis (<doi:10.1016/j.csda.2015.07.007>) and p-splines (<doi:10.1016/j.csda.2015.07.007>), contingency (<doi:10.1080/03610926.2013.824980>) and compositional tables (<doi:10.1111/sjos.12326>, <doi:10.1111/sjos.12223>, <doi:10.1080/02664763.2013.856871>) and (robust) Anderson-Darling normality tests for compositional data as well as popular log-ratio transformations (addLR, cenLR, isomLR, and their inverse transformations). In addition, visualisation and diagnostic tools are implemented as well as high and low-level plot functions for the ternary diagram.
This package provides spatial data analysis functionalities including Exploratory Spatial Data Analysis, Spatial Cluster Detection and Clustering Analysis, Regionalization, etc. based on the C++ source code of GeoDa', which is an open-source software tool that serves as an introduction to spatial data analysis. The GeoDa software and its documentation are available at <https://geodacenter.github.io>.
This package provides a set of functions for receiver operating characteristic (ROC) curve estimation and area under the curve (AUC) calculation. All functions are designed to work with aggregated data; nevertheless, they can also handle raw samples. In ROCket', we distinguish two types of ROC curve representations: 1) parametric curves - the true positive rate (TPR) and the false positive rate (FPR) are functions of a parameter (the score), 2) functions - TPR is a function of FPR. There are several ROC curve estimation methods available. An introduction to the mathematical background of the implemented methods (and much more) can be found in de Zea Bermudez, Gonçalves, Oliveira & Subtil (2014) and Cai & Pepe (2004).
Interface to libKriging C++ library <https://github.com/libKriging> that should provide most standard Kriging / Gaussian process regression features (like in DiceKriging', kergp or RobustGaSP packages). libKriging relies on Armadillo linear algebra library (Apache 2 license) by Conrad Sanderson, lbfgsb_cpp is a C++ port around by Pascal Have of lbfgsb library (BSD-3 license) by Ciyou Zhu, Richard Byrd, Jorge Nocedal and Jose Luis Morales used for hyperparameters optimization.
Calculates the Kelly criterion (Kelly, J.L. (1956) <doi:10.1002/j.1538-7305.1956.tb03809.x>) for bets given quoted prices, model predictions and commissions. Additionally it contains helper functions to calculate the probabilities for wins and draws in multi-leg games.
Loading data from AppsFlyer Pull API <https://support.appsflyer.com/hc/en-us/articles/207034346-Using-Pull-API-aggregate-data>.
Implementing the BDAT tree taper Fortran routines, which were developed for the German National Forest Inventory (NFI), to calculate diameters, volume, assortments, double bark thickness and biomass for different tree species based on tree characteristics and sorting information. See Kublin (2003) <doi:10.1046/j.1439-0337.2003.00183.x> for details.