Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides a set of functions for data transformations. Transformations are performed on character and numeric data. As the scope of the package is within Student Analytics, there are functions focused around the academic year.
This package provides a reference implementation of the Vertical Weighted Strips method explored by Raim, Livsey, and Irimata (2025) <doi:10.48550/arXiv.2401.09696> for rejection sampling.
Variance function estimation for models proposed by W. Sadler in his variance function program ('VFP', www.aacb.asn.au/AACB/Resources/Variance-Function-Program). Here, the idea is to fit multiple variance functions to a data set and consequently assess which function reflects the relationship Var ~ Mean best. For in-vitro diagnostic ('IVD') assays modeling this relationship is of great importance when individual test-results are used for defining follow-up treatment of patients.
Utilities for verifying discrete, continuous and probabilistic forecasts, and forecasts expressed as parametric distributions are included.
This package provides a library for creating time based charts, like Gantt or timelines. Possible outputs include ggplot2 diagrams, plotly.js graphs, Highcharts.js widgets and data.frames. Results can be used in the RStudio viewer pane, in RMarkdown documents or in Shiny apps. In the interactive outputs created by vistime() and hc_vistime(), you can interact with the plot using mouse hover or zoom.
Empirical models for runoff, erosion, and phosphorus loss across a vegetated filter strip, given slope, soils, climate, and vegetation (Gall et al., 2018) <doi:10.1007/s00477-017-1505-x>. It also includes functions for deriving climate parameters from measured daily weather data, and for simulating rainfall. Models implemented include MUSLE (Williams, 1975) and APLE (Vadas et al., 2009 <doi:10.2134/jeq2008.0337>).
This package provides numerous functions to fill data. These can be applied either to missing or skewed data. The functions are designed within the scope of Student Analytics.
Predicate helper functions for testing atomic vectors in R. All functions take a single argument x and check whether it's of the target type of base-R atomic vector (i.e. no class extensions nor attributes other than names'), returning TRUE or FALSE. Some additionally check for value (e.g. absence of missing values, infinities, blank characters, or names attribute; or having length 1).
This package provides a tool for calculating and drawing "variable trees". Variable trees display information about nested subsets of a data frame. <doi:10.18637/jss.v114.i04>.
Handling of vegetation data from different sources ( Turboveg 2.0 <https://www.synbiosys.alterra.nl/turboveg/>; the German national repository <https://www.vegetweb.de> and others. Taxonomic harmonization (given appropriate taxonomic lists, e.g. the Euro+Med list <https://eurosl.infinitenature.org>).
Models categorical time series through a Markov Chain when a) covariates are predictors for transitioning into the next state/symbol and b) when the dependence in the past states has variable length. The probability of transitioning to the next state in the Markov Chain is defined by a multinomial regression whose parameters depend on the past states of the chain and, moreover, the number of states in the past needed to predict the next state also depends on the observed states themselves. See Zambom, Kim, and Garcia (2022) <doi:10.1111/jtsa.12615>.
Uses large language models to create poems about R packages. Currently contains the roses() function to make "roses are red, ..." style poems and the prompt() function to only assemble the prompt without submitting it to the model.
This package implements D-vine quantile regression models with parametric or nonparametric pair-copulas. See Kraus and Czado (2017) <doi:10.1016/j.csda.2016.12.009> and Schallhorn et al. (2017) <doi:10.48550/arXiv.1705.08310>.
This package provides a lexicon and rule-based sentiment analysis tool that is specifically attuned to sentiments expressed in social media, and works well on texts from other domains. Hutto & Gilbert (2014) <https://www.aaai.org/ocs/index.php/ICWSM/ICWSM14/paper/view/8109/8122>.
Counting election votes and determining election results by different methods, including the single transferable vote or ranked choice, approval, score, plurality, condorcet and two-round runoff methods (Raftery et al., 2021 <doi:10.32614/RJ-2021-086>).
This package provides a collection of statistical tests for martingale difference hypothesis, including automatic portmanteau test (Escansiano and Lobato, 2009) <doi:10.1016/j.jeconom.2009.03.001> and automatic variance ratio test (Kim, 2009) <doi:10.1016/j.frl.2009.04.003>.
This package provides functions to run statistical analyses on surface-based neuroimaging data, computing measures including cortical thickness and surface area of the whole-brain and of the hippocampi. It can make use of FreeSurfer', fMRIprep', XCP-D', HCP and CAT12 preprocessed datasets and HippUnfold hippocampal segmentation outputs for a given sample by restructuring the data values into a single file. The single file can then be used by the package for analyses independently from its base dataset and without need for its access.
The biomarker data set by Vermeulen et al. (2009) <doi:10.1016/S1470-2045(09)70154-8> is provided. The data source, however, is by Ruijter et al. (2013) <doi:10.1016/j.ymeth.2012.08.011>. The original data set may be downloaded from <https://medischebiologie.nl/wp-content/uploads/2019/02/qpcrdatamethods.zip>. This data set is for a real-time quantitative polymerase chain reaction (PCR) experiment that comprises the raw fluorescence data of 24,576 amplification curves. This data set comprises 59 genes of interest and 5 reference genes. Each gene was assessed on 366 neuroblastoma complementary DNA (cDNA) samples and on 18 standard dilution series samples (10-fold 5-point dilution series x 3 replicates + no template controls (NTC) x 3 replicates).
This package provides a programmatic interface in R for the US Department of Transportation (DOT) National Highway Transportation Safety Administration (NHTSA) vehicle identification number (VIN) API, located at <https://vpic.nhtsa.dot.gov/api/>. The API can decode up to 50 vehicle identification numbers in one call, and provides manufacturer information about the vehicles, including make, model, model year, and gross vehicle weight rating (GVWR).
To visualize the probabilities of early termination, fail and success of Simon's two-stage design. To evaluate and visualize the operating characteristics of Simon's two-stage design.
Penalized weighted least-squares estimate for variable selection on correlated multiply imputed data and penalized estimating equations for generalized linear models with multiple imputation. Reference: Li, Y., Yang, H., Yu, H., Huang, H., Shen, Y*. (2023) "Penalized estimating equations for generalized linear models with multiple imputation", <doi:10.1214/22-AOAS1721>. Li, Y., Yang, H., Yu, H., Huang, H., Shen, Y*. (2023) "Penalized weighted least-squares estimate for variable selection on correlated multiply imputed data", <doi:10.1093/jrsssc/qlad028>.
This package provides a port of Inspect', a widely adopted Python framework for large language model evaluation. Specifically aimed at ellmer users who want to measure the effectiveness of their large language model-based products, the package supports prompt engineering, tool usage, multi-turn dialog, and model graded evaluations.
Calibrates cause-specific mortality fractions (CSMF) estimates generated by computer-coded verbal autopsy (CCVA) algorithms from WHO-standardized verbal autopsy (VA) survey data. It leverages data from the multi-country Child Health and Mortality Prevention Surveillance (CHAMPS) project <https://champshealth.org/>, which determines gold standard causes of death via Minimally Invasive Tissue Sampling (MITS). By modeling the CHAMPS data using the misclassification matrix modeling framework proposed in Pramanik et al. (2025, <doi:10.1214/24-AOAS2006>), the package includes an inventory of 48 uncertainty-quantified misclassification matrices for three CCVA algorithms (EAVA, InSilicoVA, InterVA), two age groups (neonates aged 0-27 days and children aged 1-59 months), and eight "countries" (seven countries in CHAMPS -- Bangladesh, Ethiopia, Kenya, Mali, Mozambique, Sierra Leone, South Africa -- and an estimate for countries not in CHAMPS). Given a VA-only data for an age group, CCVA algorithm, and country, the package uses the corresponding uncertainty-quantified misclassification matrix estimates as an informative prior, and utilizes the modular VA-calibration to produce calibrated CSMF estimates. It also supports ensemble calibration when VA-only data are provided for multiple algorithms. More generally, the package can be applied to calibrate predictions from a discrete classifier (or ensemble of classifiers) utilizing user-provided fixed or uncertainty-quantified misclassification matrices. This work is supported by the Bill and Melinda Gates Foundation Grant INV-034842.
This package implements functions for varying coefficient meta-analysis methods. These methods do not assume effect size homogeneity. Subgroup effect size comparisons, general linear effect size contrasts, and linear models of effect sizes based on varying coefficient methods can be used to describe effect size heterogeneity. Varying coefficient meta-analysis methods do not require the unrealistic assumptions of the traditional fixed-effect and random-effects meta-analysis methods. For details see: Statistical Methods for Psychologists, Volume 5, <https://dgbonett.sites.ucsc.edu/>.