Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
An extension of animate.css that allows user to easily add animations to any UI element in shiny app using the elements id.
This package provides an interactive Kanban board widget for shiny applications. It allows users to manage tasks using a drag-and-drop interface and offers customizable styling options. shinykanban is ideal for project management, task tracking, and agile workflows within shiny apps.
This package provides functions and datasets from Jones, O.D., R. Maillardet, and A.P. Robinson. 2014. An Introduction to Scientific Programming and Simulation, Using R. 2nd Ed. Chapman And Hall/CRC.
This package provides functions and utilities to perform Statistical Analyses in the Six Sigma way. Through the DMAIC cycle (Define, Measure, Analyze, Improve, Control), you can manage several Quality Management studies: Gage R&R, Capability Analysis, Control Charts, Loss Function Analysis, etc. Data frames used in the books "Six Sigma with R" [ISBN 978-1-4614-3652-2] and "Quality Control with R" [ISBN 978-3-319-24046-6], are also included in the package.
This package provides a mixture model for clustering individuals (or sampling groups) into stocks based on their genetic profile. Here, sampling groups are individuals that are sure to come from the same stock (e.g. breeding adults or larvae). The mixture (log-)likelihood is maximised using the EM-algorithm after finding good starting values via a K-means clustering of the genetic data. Details can be found in: Foster, S. D.; Feutry, P.; Grewe, P. M.; Berry, O.; Hui, F. K. C. & Davies (2020) <doi:10.1111/1755-0998.12920>.
Sonification (or audification) is the process of representing data by sounds in the audible range. This package provides the R function sonify() that transforms univariate data, sampled at regular or irregular intervals, into a continuous sound with time-varying frequency. The ups and downs in frequency represent the ups and downs in the data. Sonify provides a substitute for R's plot function to simplify data analysis for the visually impaired.
This package provides a collection of methods for the Bayesian estimation of Spatial Probit, Spatial Ordered Probit and Spatial Tobit Models. Original implementations from the works of LeSage and Pace (2009, ISBN: 1420064258) were ported and adjusted for R, as described in Wilhelm and de Matos (2013) <doi:10.32614/RJ-2013-013>.
We build an Susceptible-Infectious-Recovered (SIR) model where the rate of infection is the sum of the household rate and the community rate. We estimate the posterior distribution of the parameters using the Metropolis algorithm. Further details may be found in: F Scott Dahlgren, Ivo M Foppa, Melissa S Stockwell, Celibell Y Vargas, Philip LaRussa, Carrie Reed (2021) "Household transmission of influenza A and B within a prospective cohort during the 2013-2014 and 2014-2015 seasons" <doi:10.1002/sim.9181>.
Import, plot, and diagnose results from statistical catch-at-age models, used in fisheries stock assessment.
Calculates a Satorra-Bentler scaled chi-squared difference test between nested models that were estimated using maximum likelihood (ML) with robust standard errors, which cannot be calculated the traditional way. For details see Satorra & Bentler (2001) <doi:10.1007/bf02296192> and Satorra & Bentler (2010) <doi:10.1007/s11336-009-9135-y>. This package may be particularly helpful when used in conjunction with Mplus software, specifically when implementing the complex survey option. In such cases, the model estimator in Mplus defaults to ML with robust standard errors.
Identifies constant, additive, multiplicative, and user-defined simplivariate components in numeric data matrices using a genetic algorithm. Supports flexible pattern definitions and provides visualization for general biclustering applications across diverse domains. The method builds on simplivariate models as introduced in Hageman et al. (2008) <doi:10.1371/journal.pone.0003259> and is related to biclustering frameworks as reviewed by Madeira and Oliveira (2004) <doi:10.1109/TCBB.2004.2>.
This package provides infrastructure functionalities such as missing value treatment, information value calculation, GINI calculation etc. which are used for developing a traditional credit scorecard as well as a machine learning based model. The functionalities defined are standard steps for any credit underwriting scorecard development, extensively used in financial domain.
Implementation of the Stochastic Multi-Criteria Acceptability Analysis (SMAA) family of Multiple Criteria Decision Analysis (MCDA) methods. Tervonen, T. and Figueira, J. R. (2008) <doi:10.1002/mcda.407>.
This is a user-friendly way to run a parallel factor (PARAFAC) analysis (Harshman, 1971) <doi:10.1121/1.1977523> on excitation emission matrix (EEM) data from dissolved organic matter (DOM) samples (Murphy et al., 2013) <doi:10.1039/c3ay41160e>. The analysis includes profound methods for model validation. Some additional functions allow the calculation of absorbance slope parameters and create beautiful plots.'.
Computes segregation indices, including the Index of Dissimilarity, as well as the information-theoretic indices developed by Theil (1971) <isbn:978-0471858454>, namely the Mutual Information Index (M) and Theil's Information Index (H). The M, further described by Mora and Ruiz-Castillo (2011) <doi:10.1111/j.1467-9531.2011.01237.x> and Frankel and Volij (2011) <doi:10.1016/j.jet.2010.10.008>, is a measure of segregation that is highly decomposable. The package provides tools to decompose the index by units and groups (local segregation), and by within and between terms. The package also provides a method to decompose differences in segregation as described by Elbers (2021) <doi:10.1177/0049124121986204>. The package includes standard error estimation by bootstrapping, which also corrects for small sample bias. The package also contains functions for visualizing segregation patterns.
This implementation of the Empirical Mode Decomposition (EMD) works in 2 dimensions simultaneously, and can be applied on spatial data. It can handle both gridded or un-gridded datasets.
Providing convenience functions to connect R with the Spotify application programming interface ('API'). At first it aims to help setting up the OAuth2.0 Authentication flow. The default output of the get_*() functions is tidy, but optionally the functions could return the raw response from the API as well. The search_*() and get_*() functions can be combined. See the vignette for more information and examples and the official Spotify for Developers website <https://developer.spotify.com/documentation/web-api/> for information about the Web API'.
This package provides inference based on the survey package for the wide range of parametric models in the VGAM package.
It visualizes data along an Archimedean spiral <https://en.wikipedia.org/wiki/Archimedean_spiral>, makes so-called spiral graph or spiral chart. It has two major advantages for visualization: 1. It is able to visualize data with very long axis with high resolution. 2. It is efficient for time series data to reveal periodic patterns.
This package provides a toolbox for constructing potential landscapes for dynamical systems using Monte Carlo simulation. The method is based on the potential landscape definition by Wang et al. (2008) <doi:10.1073/pnas.0800579105> (also see Zhou & Li, 2016 <doi:10.1063/1.4943096> for further mathematical discussions) and can be used for a large variety of models.
Create mixed models with repeated measures using natural cubic splines applied to an observed continuous time variable, as described by Donohue et al. (2023) <doi:10.1002/pst.2285>. Iterate through multiple covariance structure types until one converges. Categorize observed time according to scheduled visits. Perform subgroup analyses.
The implementation to perform the geometric spatial point analysis developed in Hernández & Solàs (2022) <doi:10.1007/s00180-022-01244-1>. It estimates the geometric goodness-of-fit index for a set of variables against a response one based on the sf package. The package has methods to print and plot the results.
This package provides methods for analysis of energy consumption data (electricity, gas, water) at different data measurement intervals. The package provides feature extraction methods and algorithms to prepare data for data mining and machine learning applications. Deatiled descriptions of the methods and their application can be found in Hopf (2019, ISBN:978-3-86309-669-4) "Predictive Analytics for Energy Efficiency and Energy Retailing" <doi:10.20378/irbo-54833> and Hopf et al. (2016) <doi:10.1007/s12525-018-0290-9> "Enhancing energy efficiency in the residential sector with smart meter data analytics".
This package provides a supervised compression method that incorporates the response for reducing big data to a carefully selected subset. Please see Joseph and Mak (2021) <doi:10.1002/sam.11508>. This research is supported by a U.S. National Science Foundation (NSF) grant CMMI-1921646.