Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Dual transcriptional activator and repressor roles of TBX20 regulate adult cardiac structure and function. A subset of the RNA-Seq data.
tLOH, or transcriptomicsLOH, assesses evidence for loss of heterozygosity (LOH) in pre-processed spatial transcriptomics data. This tool requires spatial transcriptomics cluster and allele count information at likely heterozygous single-nucleotide polymorphism (SNP) positions in VCF format. Bayes factors are calculated at each SNP to determine likelihood of potential loss of heterozygosity event. Two plotting functions are included to visualize allele fraction and aggregated Bayes factor per chromosome. Data generated with the 10X Genomics Visium Spatial Gene Expression platform must be pre-processed to obtain an individual sample VCF with columns for each cluster. Required fields are allele depth (AD) with counts for reference/alternative alleles and read depth (DP).
Implement the BETA algorithm for infering direct target genes from DNA-binding and perturbation expression data Wang et al. (2013) <doi: 10.1038/nprot.2013.150>. Extend the algorithm to predict the combined function of two DNA-binding elements from comprable binding and expression data.
Exposes an annotation databases generated from BioMart by exposing these as TxDb objects.
Detection of ligand-protein interactions from 2D thermal profiles (DLPTP), Performs an FDR-controlled analysis of 2D-TPP experiments by functional analysis of dose-response curves across temperatures.
This package provides a package containing an environment representing the Test3.CDF file.
The tuberculosis R/Bioconductor package features tuberculosis gene expression data for machine learning. All human samples from GEO that did not come from cell lines, were not taken postmortem, and did not feature recombination have been included. The package has more than 10,000 samples from both microarray and sequencing studies that have been processed from raw data through a hyper-standardized, reproducible pipeline.
Exposes an annotation databases generated from UCSC by exposing these as TxDb objects.
TENET identifies key transcription factors (TFs) and regulatory elements (REs) linked to a specific cell type by finding significantly correlated differences in gene expression and RE DNA methylation between case and control input datasets, and identifying the top genes by number of significant RE DNA methylation site links. It also includes many tools for visualization and analysis of the results, including plots displaying and comparing methylation and expression data and methylation site link counts, survival analysis, TF motif searching in the vicinity of linked RE DNA methylation sites, custom TAD and peak overlap analysis, and UCSC Genome Browser track file generation. A utility function is also provided to download methylation, expression, and patient survival data from The Cancer Genome Atlas (TCGA) for use in TENET or other analyses.
The goal of `tpSVG` is to detect and visualize spatial variation in the gene expression for spatially resolved transcriptomics data analysis. Specifically, `tpSVG` introduces a family of count-based models, with generalizable parametric assumptions such as Poisson distribution or negative binomial distribution. In addition, comparing to currently available count-based model for spatially resolved data analysis, the `tpSVG` models improves computational time, and hence greatly improves the applicability of count-based models in SRT data analysis.
TADCompare is an R package designed to identify and characterize differential Topologically Associated Domains (TADs) between multiple Hi-C contact matrices. It contains functions for finding differential TADs between two datasets, finding differential TADs over time and identifying consensus TADs across multiple matrices. It takes all of the main types of HiC input and returns simple, comprehensive, easy to analyze results.
This package provides a package containing an environment representing the Tomato.cdf file.
This package provides raw files recorded on different Liquid Chromatography Mass Spectrometry (LC-MS) instruments. All included MS instruments are manufactured by Thermo Fisher Scientific and belong to the Orbitrap Tribrid or Q Exactive Orbitrap family of instruments. Despite their common origin and shared hardware components, e.g., Orbitrap mass analyser, the above instruments tend to write data in different "dialects" in a shared binary file format (.raw). The intention behind tartare is to provide complex but slim real-world files that can be used to make code robust with respect to this diversity. In other words, it is intended for enhanced unit testing. The package is considered to be used with the rawrr package and the Spectra MsBackends.
Example files of GC-MS data for the TargetSearch Package. The package contains raw NetCDF files from a E.coli salt stress experiment, extracted peak lists, and sample metadata required for a GC-MS analysis. The raw data has been restricted for demonstration purposes.
Exposes an annotation databases generated from UCSC by exposing these as TxDb objects.
The package provides ready to use epigenomes (obtained from TWGBS) and transcriptomes (RNA-seq) from various tissues as obtained in the study (Delacher and Imbusch 2017, PMID: 28783152). Regulatory T cells (Treg cells) perform two distinct functions: they maintain self-tolerance, and they support organ homeostasis by differentiating into specialized tissue Treg cells. The underlying dataset characterises the epigenetic and transcriptomic modifications for specialized tissue Treg cells.
This experimental data package contains 11 data sets necessary to follow the "TCGA Workflow: Analyze cancer genomics and epigenomics data using Bioconductor packages".
This package provides a first step in the data analysis of Mass Spectrometry (MS) based proteomics data is to identify peptides and proteins. With this respect the huge number of experimental mass spectra typically have to be assigned to theoretical peptides derived from a sequence database. Search engines are used for this purpose. These tools compare each of the observed spectra to all candidate theoretical spectra derived from the sequence data base and calculate a score for each comparison. The observed spectrum is then assigned to the theoretical peptide with the best score, which is also referred to as the peptide to spectrum match (PSM). It is of course crucial for the downstream analysis to evaluate the quality of these matches. Therefore False Discovery Rate (FDR) control is used to return a reliable list PSMs. The FDR, however, requires a good characterisation of the score distribution of PSMs that are matched to the wrong peptide (bad target hits). In proteomics, the target decoy approach (TDA) is typically used for this purpose. The TDA method matches the spectra to a database of real (targets) and nonsense peptides (decoys). A popular approach to generate these decoys is to reverse the target database. Hence, all the PSMs that match to a decoy are known to be bad hits and the distribution of their scores are used to estimate the distribution of the bad scoring target PSMs. A crucial assumption of the TDA is that the decoy PSM hits have similar properties as bad target hits so that the decoy PSM scores are a good simulation of the target PSM scores. Users, however, typically do not evaluate these assumptions. To this end we developed TargetDecoy to generate diagnostic plots to evaluate the quality of the target decoy method.
The `TrIdent` R package automates the analysis of transductomics data by detecting, classifying, and characterizing read coverage patterns associated with potential transduction events. Transductomics is a DNA sequencing-based method for the detection and characterization of transduction events in pure cultures and complex communities. Transductomics relies on mapping sequencing reads from a viral-like particle (VLP)-fraction of a sample to contigs assembled from the metagenome (whole-community) of the same sample. Reads from bacterial DNA carried by VLPs will map back to the bacterial contigs of origin creating read coverage patterns indicative of ongoing transduction.
tidySingleCellExperiment is an adapter that abstracts the SingleCellExperiment container in the form of a tibble'. This allows *tidy* data manipulation, nesting, and plotting. For example, a tidySingleCellExperiment is directly compatible with functions from tidyverse packages `dplyr` and `tidyr`, as well as plotting with `ggplot2` and `plotly`. In addition, the package provides various utility functions specific to single-cell omics data analysis (e.g., aggregation of cell-level data to pseudobulks).
The TRONCO (TRanslational ONCOlogy) R package collects algorithms to infer progression models via the approach of Suppes-Bayes Causal Network, both from an ensemble of tumors (cross-sectional samples) and within an individual patient (multi-region or single-cell samples). The package provides parallel implementation of algorithms that process binary matrices where each row represents a tumor sample and each column a single-nucleotide or a structural variant driving the progression; a 0/1 value models the absence/presence of that alteration in the sample. The tool can import data from plain, MAF or GISTIC format files, and can fetch it from the cBioPortal for cancer genomics. Functions for data manipulation and visualization are provided, as well as functions to import/export such data to other bioinformatics tools for, e.g, clustering or detection of mutually exclusive alterations. Inferred models can be visualized and tested for their confidence via bootstrap and cross-validation. TRONCO is used for the implementation of the Pipeline for Cancer Inference (PICNIC).
This package provides access to RNA-seq data generated by the Tabula Muris Senis project via the Bioconductor project. The data is made available without restrictions by the Chan Zuckerberg Biohub. It is provided here without further processing, collected in the form of SingleCellExperiment objects.
transmogR provides the tools needed to crate a new reference genome or reference transcriptome, using a set of variants. Variants can be any combination of SNPs, Insertions and Deletions. The intended use-case is to enable creation of variant-modified reference transcriptomes for incorporation into transcriptomic pseudo-alignment workflows, such as salmon.
tidySpatialExperiment provides a bridge between the SpatialExperiment package and the tidyverse ecosystem. It creates an invisible layer that allows you to interact with a SpatialExperiment object as if it were a tibble; enabling the use of functions from dplyr, tidyr, ggplot2 and plotly. But, underneath, your data remains a SpatialExperiment object.