Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Raman and (FT)IR spectral analysis tool for plastic particles and other environmental samples (Cowger et al. 2021, <doi:10.1021/acs.analchem.1c00123>). With read_any(), Open Specy provides a single function for reading individual, batch, or map spectral data files like .asp, .csv, .jdx, .spc, .spa, .0, and .zip. process_spec() simplifies processing spectra, including smoothing, baseline correction, range restriction and flattening, intensity conversions, wavenumber alignment, and min-max normalization. Spectra can be identified in batch using an onboard reference library (Cowger et al. 2020, <doi:10.1177/0003702820929064>) using match_spec(). A Shiny app is available via run_app() or online at <https://www.openanalysis.org/openspecy/>.
Estimates one-inflated positive Poisson (OIPP) and one-inflated zero-truncated negative binomial (OIZTNB) regression models. A suite of ancillary statistical tools are also provided, including: estimation of positive Poisson (PP) and zero-truncated negative binomial (ZTNB) models; marginal effects and their standard errors; diagnostic likelihood ratio and Wald tests; plotting; predicted counts and expected responses; and random variate generation. The models and tools, as well as four applications, are shown in Godwin, R. T. (2024). "One-inflated zero-truncated count regression models" arXiv preprint <doi:10.48550/arXiv.2402.02272>.
This package provides a set of tools to extract bibliographic content from OpenAlex database using API <https://docs.openalex.org>.
This package provides a tool for visualizing numerical data (e.g., gene expression, protein abundance) on predefined anatomical maps of human/mouse organs and subcellular organelles. It supports customization of color schemes, filtering by organ systems (for organisms) or organelle types, and generation of optional bar charts for quantitative comparison. The package integrates coordinate data for organs and organelles to plot anatomical/subcellular contours, mapping data values to specific structures for intuitive visualization of biological data distribution.The underlying method was described in the preprint by Zhou et al. (2022) <doi:10.1101/2022.09.07.506938>.
This package provides a database resource that is accessible through the Open Database Connectivity ('ODBC') API. This package uses the Resource model, with URL "resolver" and "client", to dynamically discover and make accessible tables stored in a MS SQL Server database. For more details see Marcon (2021) <doi:10.1371/journal.pcbi.1008880>.
Optimal k Nearest Neighbours Ensemble is an ensemble of base k nearest neighbour models each constructed on a bootstrap sample with a random subset of features. k closest observations are identified for a test point "x" (say), in each base k nearest neighbour model to fit a stepwise regression to predict the output value of "x". The final predicted value of "x" is the mean of estimates given by all the models. The implemented model takes training and test datasets and trains the model on training data to predict the test data. Ali, A., Hamraz, M., Kumam, P., Khan, D.M., Khalil, U., Sulaiman, M. and Khan, Z. (2020) <DOI:10.1109/ACCESS.2020.3010099>.
This package implements ordered beta regression models, which are for modeling continuous variables with upper and lower bounds, such as survey sliders, dose-response relationships and indexes. For more information, see Kubinec (2023) <doi:10.31235/osf.io/2sx6y>. The package is a front-end to the R package brms', which facilitates a range of regression specifications, including hierarchical, dynamic and multivariate modeling.
Optimal testing under general dependence. The R package implements procedures proposed in Wang, Han, and Tong (2022). The package includes parameter estimation procedures, the computation for the posterior probabilities, and the testing procedure.
This package provides a collection of functions that aid in calculating the optimum time to stock hatchery reared fish into a body of water given the growth, mortality and cost of raising a particular number of individuals to a certain length.
Algorithm of online regularized k-means to deal with online multi(single) view data. The philosophy of the package is described in Guo G. (2024) <doi:10.1016/j.ins.2024.121133>.
Generating and validating One-time Password based on Hash-based Message Authentication Code (HOTP) and Time Based One-time Password (TOTP) according to RFC 4226 <https://datatracker.ietf.org/doc/html/rfc4226> and RFC 6238 <https://datatracker.ietf.org/doc/html/rfc6238>.
Tests the observed overlapping polygon area in a collection of polygons against a null model of random rotation, as explained in De la Cruz et al. (2017) <doi:10.13140/RG.2.2.12825.72801>.
This package implements the algorithm in Chen, Wang and Samworth (2020) <arxiv:2003.03668> for online detection of sudden mean changes in a sequence of high-dimensional observations. It also implements methods by Mei (2010) <doi:10.1093/biomet/asq010>, Xie and Siegmund (2013) <doi:10.1214/13-AOS1094> and Chan (2017) <doi:10.1214/17-AOS1546>.
The classical and extended occupancy distributions occur in cases where balls are randomly allocated to bins. The PDF, CDF, quantile functions, generation of random variates, and calculating the first four central moments of the distributions are implemented as described in Oâ Neill (2019) <doi:10.1080/00031305.2019.1699445>.
Uses the outputs of a logistic regression model, from caret <https://CRAN.R-project.org/package=caret>, to build an odds plot. This allows for the rapid visualisation of odds plot ratios and works best with the outputs of CARET's GLM model class, by returning the final trained model.
Three-dimensional rendering for grid and ggplot2 graphics using cubes and cuboids drawn with an oblique projection. As a special case also supports primary view orthographic projections. Can be viewed as an extension to the isocubes package <https://github.com/coolbutuseless/isocubes>.
This package provides tools to segment fire scars and assess severity and vegetation regeneration using Otsu thresholding on Relative Burn Ratio (RBR) and differenced Normalized Burn Ratio (dNBR) image composites. Includes support for mosaic handling, polygon metrics, post-fire regeneration detection, day-of-year flagging, and validation against reference datasets. Designed for analysis of fire history in the Iberian Peninsula. Input Landsat composites follow the methodology described in Quintero et al. (2025) <doi:10.2139/ssrn.4929831>.
Designed to enhance data validation and management processes by employing a set of functions that read a set of rules from a CSV or Excel file and apply them to a dataset. Funded by the National Renewable Energy Laboratory and Possibility Lab, maintained by the Moore Institute for Plastic Pollution Research.
Estimates rates for continuous character evolution under Brownian motion and a new set of Ornstein-Uhlenbeck based Hansen models that allow both the strength of the pull and stochastic motion to vary across selective regimes. Beaulieu et al (2012).
Provide methods for estimating optimal treatment regimes in survival contexts with Kaplan-Meier-like estimators when no unmeasured confounding assumption is satisfied (Jiang, R., Lu, W., Song, R., and Davidian, M. (2017) <doi:10.1111/rssb.12201>) and when no unmeasured confounding assumption fails to hold and a binary instrument is available (Xia, J., Zhan, Z., Zhang, J. (2022) <arXiv:2210.05538>).
This package provides a comprehensive set of indexes and tests for social segregation analysis, as described in Tivadar (2019) - OasisR': An R Package to Bring Some Order to the World of Segregation Measurement <doi:10.18637/jss.v089.i07>. The package is the most complete existing tool and it clarifies many ambiguities and errors regarding the definition of segregation indices. Additionally, OasisR introduces several resampling methods that enable testing their statistical significance (randomization tests, bootstrapping, and jackknife methods).
An assortment of helper functions for managing data (e.g., rotating values in matrices by a user-defined angle, switching from row- to column-indexing), dates (e.g., intuiting year from messy date strings), handling missing values (e.g., removing elements/rows across multiple vectors or matrices if any have an NA), text (e.g., flushing reports to the console in real-time); and combining data frames with different schema (copying, filling, or concatenating columns or applying functions before combining).
Determine the sea area where the fishing boat operates. The latitude and longitude of geographic coordinates are used to match oceanic areas and economic sea areas. You can plot the distribution map with dotplot() function. Please refer to Flanders Marine Institute (2020) <doi:10.14284/403>.
Many treatment effect estimators can be written as weighted outcomes. These weights have established use cases like checking covariate balancing via packages like cobalt'. This package takes the original estimator objects and outputs these outcome weights. It builds on the general framework of Knaus (2024) <doi:10.48550/arXiv.2411.11559>. This version is compatible with the grf package and provides an internal implementation of Double Machine Learning.