Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Set of functions for Data Envelopment Analysis, including classical, fuzzy, cross-efficiency, bootstrapping, and Malmquist models. See: Banker, R.; Charnes, A.; Cooper, W.W. (1984). <doi:10.1287/mnsc.30.9.1078>, Charnes, A.; Cooper, W.W.; Rhodes, E. (1978). <doi:10.1016/0377-2217(78)90138-8> and Charnes, A.; Cooper, W.W.; Rhodes, E. (1981). <doi:10.1287/mnsc.27.6.668>.
This package provides convenient methods for accessing the data in dist objects with minimal memory and computational overhead. disttools can be used to extract the distance between any pair or combination of points encoded by a dist object using only the indices of those points. This is an improvement over existing functionality, which requires either coercing a dist object into a matrix or calculating the one dimensional index corresponding to a pair of observations. Coercion to a matrix is undesirable because doing so doubles the amount of memory required for storage. In contrast, there is no inherent downside to the latter solution. However, in part due to several edge cases, correctly and efficiently implementing such a solution can be challenging. disttools abstracts away these challenges and provides a simple interface to access the data in a dist object using the latter approach.
This package provides functions for interacting with all sections of the official Danish Address Web API (also known as DAWA') <https://api.dataforsyningen.dk>. The development of this package is completely independent from the government agency, Klimadatastyrelsen, who maintains the API.
Estimation of heterogeneity-robust difference-in-differences estimators, with a binary, discrete, or continuous treatment, in designs where past treatments may affect the current outcome.
These are data sets for the hit TV show, RuPaul's Drag Race. Data right now include episode-level data, contestant-level data, and episode-contestant-level data. This is a work in progress, and a love letter of a kind to RuPaul's Drag Race and the performers that have appeared on the show. This may not be the most productive use of my time, but I have tenure and what are you going to do about it? I think there is at least some value in this package if it allows the show's fandom to learn more about the R programming language around its contents.
Define a spatial Area of Interest (AOI) around a constructed dam using hydrology data. Dams have environmental and social impacts, both positive and negative. Current analyses of dams have no consistent way to specify at what spatial extent we should evaluate these impacts. damAOI implements methods to adjust reservoir polygons to match satellite-observed surface water areas, plot upstream and downstream rivers using elevation data and accumulated river flow, and draw buffers clipped by river basins around reservoirs and relevant rivers. This helps to consistently determine the areas which could be impacted by dam construction, facilitating comparative analysis and informed infrastructure investments.
The discrete Laplace exponential family for use in fitting generalized linear models.
The Directed Prediction Index ('DPI') is a quasi-causal inference (causal discovery) method for observational data designed to quantify the relative endogeneity (relative dependence) of outcome (Y) versus predictor (X) variables in regression models. By comparing the proportion of variance explained (R-squared) between the Y-as-outcome model and the X-as-outcome model while controlling for a sufficient number of possible confounders, it can suggest a plausible (admissible) direction of influence from a more exogenous variable (X) to a more endogenous variable (Y). Methodological details are provided at <https://psychbruce.github.io/DPI/>. This package also provides functions for data simulation and network analysis (correlation, partial correlation, and Bayesian networks).
Spatial downscaling of coarse grid mapping to fine grid mapping using predictive covariates and a model fitted using the caret package. The original dissever algorithm was published by Malone et al. (2012) <doi:10.1016/j.cageo.2011.08.021>, and extended by Roudier et al. (2017) <doi:10.1016/j.compag.2017.08.021>.
This package provides a datetime range picker widget for usage in Shiny'. It creates a calendar allowing to select a start date and an end date as well as two fields allowing to select a start time and an end time.
Simple functions to deflate nominal Brazilian Reais using several popular price indexes downloaded from the Brazilian Institute for Applied Economic Research.
Utilities for handling dates and times, such as selecting particular days of the week or month, formatting timestamps as required by RSS feeds, or converting timestamp representations of other software (such as MATLAB and Excel') to R. The package is lightweight (no dependencies, pure R implementations) and relies only on R's standard classes to represent dates and times ('Date and POSIXt'); it aims to provide efficient implementations, through vectorisation and the use of R's native numeric representations of timestamps where possible.
This package provides a key-value dictionary data structure based on R6 class which is designed to be similar usages with other languages dictionary (e.g. Python') with reference semantics and extendabilities by R6.
Use numerical optimization to fit ordinary differential equations (ODEs) to time series data to examine the dynamic relationships between variables or the characteristics of a dynamical system. It can now be used to estimate the parameters of ODEs up to second order, and can also apply to multilevel systems. See <https://github.com/yueqinhu/defit> for details.
Explore data related to the Doctor Who TV series.
Facilitates the import and analysis of SNP (single nucleotide polymorphism') and silicodart (presence/absence) data. The main focus is on data generated by DarT (Diversity Arrays Technology), however, data from other sequencing platforms can be used once SNP or related fragment presence/absence data from any source is imported. Genetic datasets are stored in a derived genlight format (package adegenet'), that allows for a very compact storage of data and metadata. Functions are available for importing and exporting of SNP and silicodart data, for reporting on and filtering on various criteria (e.g. callrate', heterozygosity', reproducibility', maximum allele frequency). Additional functions are available for visualization (e.g. Principle Coordinate Analysis) and creating a spatial representation using maps. dartR.base is the base package of the dartRverse suits of packages. To install the other packages, we recommend to install the dartRverse package, that supports the installation of all packages in the dartRverse'. If you want to cite dartR', you find the information by typing citation('dartR.base') in the console.
The df2yaml aims to simplify the process of converting dataframe to YAML <https://yaml.org/>. The dataframe with multiple key columns and one value column will be converted to the multi-level hierarchy.
Gives you the ability to use arbitrary Docker images (including custom ones) to process Rmarkdown code chunks.
This package contains Data frames and functions used in the book "Design and Analysis of Experiments with R", Lawson(2015) ISBN-13:978-1-4398-6813-3.
Collects libphonenumber jars required for the dialr package.
An interactive editor built on rhandsontable to allow the interactive viewing, entering, filtering and editing of data in R <https://dillonhammill.github.io/DataEditR/>.
This package provides density functions for the joint distribution of choice, response time and confidence for discrete confidence judgments as well as functions for parameter fitting, prediction and simulation for various dynamical models of decision confidence. All models are explained in detail by Hellmann et al. (2023; Preprint available at <https://osf.io/9jfqr/>, published version: <doi:10.1037/rev0000411>). Implemented models are the dynaViTE model, dynWEV model, the 2DSD model (Pleskac & Busemeyer, 2010, <doi:10.1037/a0019737>), and various race models. C++ code for dynWEV and 2DSD is based on the rtdists package by Henrik Singmann.
Functions, methods, and datasets for fitting dimension reduction regression, using slicing (methods SAVE and SIR), Principal Hessian Directions (phd, using residuals and the response), and an iterative IRE. Partial methods, that condition on categorical predictors are also available. A variety of tests, and stepwise deletion of predictors, is also included. Also included is code for computing permutation tests of dimension. Adding additional methods of estimating dimension is straightforward. For documentation, see the vignette in the package. With version 3.0.4, the arguments for dr.step have been modified.
Generates visualizations with Dukeâ s official suite of colors in a color blind friendly way.