Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Several yield stability analyses are mentioned in this package: variation and regression based yield stability analyses. Resampling techniques are integrated with these stability analyses. The function stab.mean() provides the genotypic means and ranks including their corresponding confidence intervals. The function stab.var() provides the genotypic variances over environments including their corresponding confidence intervals. The function stab.fw() is an extended method from the Finlay-Wilkinson method (1963). This method can include several other factors that might impact yield stability. Resampling technique is integrated into this method. A few missing data points or unbalanced data are allowed too. The function stab.fw.check() is an extended method from the Finlay-Wilkinson method (1963). The yield stability is evaluated via common check line(s). Resampling technique is integrated.
Collection of functions to enhance ggplot2 and ggiraph'. Provides functions for exploratory plots. All plot can be a static plot or an interactive plot using ggiraph'.
This package contains the implementation of a binary large margin classifier based on Gabriel Graph. References for this method can be found in L.C.B. Torres et al. (2015) <doi:10.1049/el.2015.1644>.
This package provides a system for fitting Gompertz Curve in a Time Series Data.
Analysis of multivariate data using generalized linear latent variable models (gllvm). Estimation is performed using either the Laplace method, variational approximations, or extended variational approximations, implemented via TMB (Kristensen et al. (2016), <doi:10.18637/jss.v070.i05>).
Fit joint models of survival and multivariate longitudinal data. The longitudinal data is specified by generalised linear mixed models. The joint models are fit via maximum likelihood using an approximate expectation maximisation algorithm. Bernhardt (2015) <doi:10.1016/j.csda.2014.11.011>.
This package contains functions to create life history parameter plots from raw data. The plots are created using ggplot2', and calculations done using the tidyverse collection of packages. The package contains references to FishBase (Froese R., Pauly D., 2023) <https://www.fishbase.se/>.
An interface for retrieving and displaying the information returned online by Google Trends is provided. Trends (number of hits) over the time as well as geographic representation of the results can be displayed.
Shiny application for the analysis of groundwater monitoring data, designed to work with simple time-series data for solute concentration and ground water elevation, but can also plot non-aqueous phase liquid (NAPL) thickness if required. Also provides the import of a site basemap in GIS shapefile format.
Techniques from a particular branch of spatial statistics,termed geographically-weighted (GW) models. GW models suit situations when data are not described well by some global model, but where there are spatial regions where a suitably localised calibration provides a better description. GWmodel includes functions to calibrate: GW summary statistics (Brunsdon et al., 2002)<doi: 10.1016/s0198-9715(01)00009-6>, GW principal components analysis (Harris et al., 2011)<doi: 10.1080/13658816.2011.554838>, GW discriminant analysis (Brunsdon et al., 2007)<doi: 10.1111/j.1538-4632.2007.00709.x> and various forms of GW regression (Brunsdon et al., 1996)<doi: 10.1111/j.1538-4632.1996.tb00936.x>; some of which are provided in basic and robust (outlier resistant) forms.
Identify and visualize individuals with unusual association patterns of genetics and geography using the approach of Chang and Schmid (2023) <doi:10.1101/2023.04.06.535838>. It detects potential outliers that violate the isolation-by-distance assumption using the K-nearest neighbor approach. You can obtain a table of outliers with statistics and visualize unusual geo-genetic patterns on a geographical map. This is useful for landscape genomics studies to discover individuals with unusual geography and genetics associations from a large biological sample.
This package implements the G-Formula method for causal inference with time-varying treatments and confounders using Bayesian multiple imputation methods, as described by Bartlett et al (2025) <doi:10.1177/09622802251316971>. It creates multiple synthetic imputed datasets under treatment regimes of interest using the mice package. These can then be analysed using rules developed for analysing multiple synthetic datasets.
Estimates the Gini index and computes variances and confidence intervals for finite and infinite populations, using different methods; also computes Gini index for continuous probability distributions, draws samples from continuous probability distributions with Gini indices set by the user; uses Rcpp'. References: Muñoz et al. (2023) <doi:10.1177/00491241231176847>. à lvarez et al. (2021) <doi:10.3390/math9243252>. Giorgi and Gigliarano (2017) <doi:10.1111/joes.12185>. Langel and Tillé (2013) <doi:10.1111/j.1467-985X.2012.01048.x>.
Designed to facilitate the preprocessing and linking of GIS (Geographic Information System) databases <https://www.sciencedirect.com/topics/computer-science/gis-database>, the R package GISINTEGRATION offers a robust solution for efficiently preparing GIS data for advanced spatial analyses. This package excels in simplifying intrica procedures like data cleaning, normalization, and format conversion, ensuring that the data are optimally primed for precise and thorough analysis.
Modified versions of the lag() and summary() functions: glag() and gsummary(). The prefix g is a reminder of who to blame if things do not work as they should.
This package provides functions to compute various germination indices such as germinability, median germination time, mean germination time, mean germination rate, speed of germination, Timson's index, germination value, coefficient of uniformity of germination, uncertainty of germination process, synchrony of germination etc. from germination count data. Includes functions for fitting cumulative seed germination curves using four-parameter hill function and computation of associated parameters. See the vignette for more, including full list of citations for the methods implemented.
Automatically performs desired statistical tests (e.g. wilcox.test(), t.test()) to compare between groups, and adds the resulting p-values to the plot with an annotation bar. Visualizing group differences are frequently performed by boxplots, bar plots, etc. Statistical test results are often needed to be annotated on these plots. This package provides a convenient function that works on ggplot2 objects, performs the desired statistical test between groups of interest and annotates the test results on the plot.
This package provides tools for specifying and evaluating standard and truncated probability distributions, with support for log-space computation and joint distribution specification. It enables Bayesian computation for cognition models and includes utilities for density calculation, sampling, and visualisation, facilitating prior distribution specification and model assessment in hierarchical Bayesian frameworks.
This package provides a comprehensive framework for visualizing associations and interaction structures in matrix-formatted data using Generalized Association Plots (GAP). The package implements multiple proximity computation methods (e.g., correlation, distance metrics), ordering techniques including hierarchical clustering (HCT) and Rank-2-Ellipse (R2E) seriation, and optional flipping strategies to enhance visual symmetry. It supports a variety of covariate-based color annotations, allows flexible customization of layout and output, and is suitable for analyzing multivariate data across domains such as social sciences, genomics, and medical research. The method is based on Generalized Association Plots introduced by Chen (2002) <https://www3.stat.sinica.edu.tw/statistica/J12N1/J12N11/J12N11.html> and further extended by Wu, Tien, and Chen (2010) <doi:10.1016/j.csda.2008.09.029>.
Statistical analysis of monthly background checks of gun purchases for the New York Times story "What Drives Gun Sales: Terrorism, Obama and Calls for Restrictions" at <https://www.nytimes.com/interactive/2015/12/10/us/gun-sales-terrorism-obama-restrictions.html> is provided.
Introduces a Copilot'-like completion experience, but it knows how to talk to the objects in your R environment. ellmer chats are integrated directly into your RStudio and Positron sessions, automatically incorporating relevant context from surrounding lines of code and your global environment (like data frame columns and types). Open the package dialog box with a keyboard shortcut, type your request, and the assistant will stream its response directly into your documents.
The git2rdata package is an R package for writing and reading dataframes as plain text files. A metadata file stores important information. 1) Storing metadata allows to maintain the classes of variables. By default, git2rdata optimizes the data for file storage. The optimization is most effective on data containing factors. The optimization makes the data less human readable. The user can turn this off when they prefer a human readable format over smaller files. Details on the implementation are available in vignette("plain_text", package = "git2rdata"). 2) Storing metadata also allows smaller row based diffs between two consecutive commits. This is a useful feature when storing data as plain text files under version control. Details on this part of the implementation are available in vignette("version_control", package = "git2rdata"). Although we envisioned git2rdata with a git workflow in mind, you can use it in combination with other version control systems like subversion or mercurial. 3) git2rdata is a useful tool in a reproducible and traceable workflow. vignette("workflow", package = "git2rdata") gives a toy example. 4) vignette("efficiency", package = "git2rdata") provides some insight into the efficiency of file storage, git repository size and speed for writing and reading.
This package provides a framework for analytically computing the asymptotic confidence intervals and maximum-likelihood estimates of a class of continuous-time Gaussian branching processes defined by Mitov V, Bartoszek K, Asimomitis G, Stadler T (2019) <doi:10.1016/j.tpb.2019.11.005>. The class of model includes the widely used Ornstein-Uhlenbeck and Brownian motion branching processes. The framework is designed to be flexible enough so that the users can easily specify their own sub-models, or re-parameterizations, and obtain the maximum-likelihood estimates and confidence intervals of their own custom models.
Spline regression, generalized additive models and component-wise gradient boosting utilizing geometrically designed (GeD) splines. GeDS regression is a non-parametric method inspired by geometric principles, for fitting spline regression models with variable knots in one or two independent variables. It efficiently estimates the number of knots and their positions, as well as the spline order, assuming the response variable follows a distribution from the exponential family. GeDS models integrate the broader category of generalized (non-)linear models, offering a flexible approach to model complex relationships. A description of the method can be found in Kaishev et al. (2016) <doi:10.1007/s00180-015-0621-7> and Dimitrova et al. (2023) <doi:10.1016/j.amc.2022.127493>. Further extending its capabilities, GeDS's implementation includes generalized additive models (GAM) and functional gradient boosting (FGB), enabling versatile multivariate predictor modeling, as discussed in the forthcoming work of Dimitrova et al. (2025).