Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides a collection of utility functions to download and manage data sets from the Internet or from other sources.
This package provides a novel forward stepwise discriminant analysis framework that integrates Pillai's trace with Uncorrelated Linear Discriminant Analysis (ULDA), providing an improvement over traditional stepwise LDA methods that rely on Wilks Lambda. A stand-alone ULDA implementation is also provided, offering a more general solution than the one available in the MASS package. It automatically handles missing values and provides visualization tools. For more details, see Wang (2024) <doi:10.48550/arXiv.2409.03136>.
This package provides tools to estimate the genome size of polyploid species using k-mer frequencies. This package includes functions to process k-mer frequency data and perform genome size estimation by fitting k-mer frequencies with a normal distribution model. It supports handling of complex polyploid genomes and offers various options for customizing the estimation process. The basic method findGSE is detailed in Sun, Hequan, et al. (2018) <doi:10.1093/bioinformatics/btx637>.
Routines for the estimation or simultaneous estimation and variable selection in several functional semiparametric models with scalar responses are provided. These models include the functional single-index model, the semi-functional partial linear model, and the semi-functional partial linear single-index model. Additionally, the package offers algorithms for handling scalar covariates with linear effects that originate from the discretization of a curve. This functionality is applicable in the context of the linear model, the multi-functional partial linear model, and the multi-functional partial linear single-index model.
Shiny app for the fdapace package.
This package provides a set of methods to simulate from and fit computational models of attentional selectivity. The package implements the dual-stage two-phase (DSTP) model of Hübner et al. (2010) <doi:10.1037/a0019471>, and the shrinking spotlight (SSP) model of White et al. (2011) <doi:10.1016/j.cogpsych.2011.08.001>.
This package provides a fast method for approximating time-varying infectious disease transmission rates from disease incidence time series and other data, based on a discrete time approximation of an SEIR model, as analyzed in Jagan et al. (2020) <doi:10.1371/journal.pcbi.1008124>.
This package creates a HTML widget which displays the results of searching for a pattern in files in a given folder. The results can be viewed in the RStudio viewer pane, included in a R Markdown document or in a Shiny application. Also provides a Shiny application allowing to run this widget and to navigate in the files found by the search. Instead of creating a HTML widget, it is also possible to get the results of the search in a tibble'. The search is performed by the grep command-line utility.
This package provides functions for performing (external) multidimensional unfolding. Restrictions (fixed coordinates or model restrictions) are available for both row and column coordinates in all combinations.
Include a countdown <https://github.com/PButcher/flipdown> in all R contexts with the convenience of htmlwidgets'.
Spatio-temporal locations of an animal are computed from annotated data with a hidden Markov model via particle filter algorithm. The package is relatively robust to varying degrees of shading. The hidden Markov model is described in Movement Ecology - Rakhimberdiev et al. (2015) <doi:10.1186/s40462-015-0062-5>, general package description is in the Methods in Ecology and Evolution - Rakhimberdiev et al. (2017) <doi:10.1111/2041-210X.12765> and package accuracy assessed in the Journal of Avian Biology - Rakhimberdiev et al. (2016) <doi:10.1111/jav.00891>.
Computes and plots prediction intervals for numerical data or prediction sets for categorical data using prior information. Empirical Bayes procedures to estimate the prior information from multi-group data are included. See, e.g.,Bersson and Hoff (2022) <arXiv:2204.08122> "Optimal Conformal Prediction for Small Areas".
All data sets required for the examples and exercises in the book "Forecasting: principles and practice" by Rob J Hyndman and George Athanasopoulos <https://OTexts.com/fpp3/>. All packages required to run the examples are also loaded. Additional data sets not used in the book are also included.
This package contains a set of utilities for building and testing statistical models (linear, logistic,ordinal or COX) for Computer Aided Diagnosis/Prognosis applications. Utilities include data adjustment, univariate analysis, model building, model-validation, longitudinal analysis, reporting and visualization.
Implement frequent-directions algorithm for efficient matrix sketching. (Edo Liberty (2013) <doi:10.1145/2487575.2487623>).
Frequentist assisted by Bayes (FAB) confidence interval construction. See Adaptive multigroup confidence intervals with constant coverage by Yu and Hoff <DOI:10.1093/biomet/asy009> and Exact adaptive confidence intervals for linear regression coefficients by Hoff and Yu <DOI:10.1214/18-EJS1517>.
This package provides a typical gait analysis requires the examination of the motion of nine joint angles on the left-hand side and six joint angles on the right-hand side across multiple subjects. Due to the quantity and complexity of the data, it is useful to calculate the amount by which a subjectâ s gait deviates from an average normal profile and to represent this deviation as a single number. Such a measure can quantify the overall severity of a condition affecting walking, monitor progress, or evaluate the outcome of an intervention prescribed to improve the gait pattern. This R package provides tools for computing the Functional Gait Deviation Index, a novel index for quantifying gait pathology using multivariate functional principal component analysis. The package supports analysis at the level of both legs combined, individual legs, and individual joints/planes. It includes functions for functional data preprocessing, multivariate functional principal component decomposition, FGDI computation, and visualisation of gait abnormality scores. Further details can be found in Minhas, S. K., Sangeux, M., Polak, J., & Carey, M. (2025). The Functional Gait Deviation Index. Journal of Applied Statistics <doi:10.1080/02664763.2025.2514150>.
Fit linear regression models where the random errors follow a finite mixture of of Skew Heavy-Tailed Errors.
High-performance tools for transport modeling - network processing, route enumeration, and traffic assignment in R. The package implements the Path-Sized Logit model for traffic assignment - Ben-Akiva and Bierlaire (1999) <doi:10.1007/978-1-4615-5203-1_2> - an efficient route enumeration algorithm, and provides powerful utility functions for (multimodal) network generation, consolidation/contraction, and/or simplification. The user is expected to provide a transport network (either a graph or collection of linestrings) and an origin-destination (OD) matrix of trade/traffic flows. Maintained by transport consultants at CPCS (cpcs.ca).
An implementation of the Fizz Buzz algorithm, as defined e.g. in <https://en.wikipedia.org/wiki/Fizz_buzz>. It provides the standard algorithm with 3 replaced by Fizz and 5 replaced by Buzz, with the option of specifying start and end numbers, step size and the numbers being replaced by fizz and buzz, respectively. This package gives interviewers the optional answer of "I use fizzbuzzR::fizzbuzz()" when interviewing rather than having to write an algorithm themselves.
Given a set of parameters describing model dynamics and a corresponding cost function, FAMoS performs a dynamic forward-backward model selection on a specified selection criterion. It also applies a non-local swap search method. Works on any cost function. For detailed information see Gabel et al. (2019) <doi:10.1371/journal.pcbi.1007230>.
Multifactor nonparametric analysis of variance based on ranks. Builds on the Kruskal-Wallis H test and its 2x2 Scheirer-Ray-Hare extension to handle any factorial designs. Provides effect sizes, Dunn-Bonferroni pairwise-comparison matrices, and simple-effects analyses. Tailored for psychology and the social sciences, with beginner-friendly R syntax and outputs that can be dropped into journal reports. Includes helpers to export tab-separated results and compact tables of descriptive statistics (to APA-style reports).
An easy framework to read FDA Adverse Event Reporting System XML/ASCII files <https://www.fda.gov/drugs/questions-and-answers-fdas-adverse-event-reporting-system-faers/fda-adverse-event-reporting-system-faers-latest-quarterly-data-files>.
Create datasets with factorial structure through simulation by specifying variable parameters. Extended documentation at <https://scienceverse.github.io/faux/>. Described in DeBruine (2020) <doi:10.5281/zenodo.2669586>.