Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Researchers working with Qualitative Comparative Analysis (QCA) can use the package to estimate power of a sufficient term using permutation tests. A term can be anything: A condition, conjunction or disjunction of any combination of these. The package further allows users to plot the estimation results and to estimate the number of cases required to achieve a certain level of power, given a prespecified null and alternative hypothesis. Reference for the article introducing power estimation for QCA is: Rohlfing, Ingo (2018) <doi:10.1017/pan.2017.30> (ungated version: <doi:10.17605/OSF.IO/PC4DF>).
Create static QR codes in R. The content of the QR code is exactly what the user defines. We don't add a redirect URL, making it impossible for us to track the usage of the QR code. This allows to generate fast, free to use and privacy friendly QR codes.
Code for centroid, median and quantile classifiers.
Full text, in data frames containing one row per verse, of the Qur'an in Arabic (with and without vowels) and in English (the Yusuf Ali and Saheeh International translations), formatted to be convenient for text analysis.
Developed to perform the estimation and inference for regression coefficient parameters in longitudinal marginal models using the method of quadratic inference functions. Like generalized estimating equations, this method is also a quasi-likelihood inference method. It has been showed that the method gives consistent estimators of the regression coefficients even if the correlation structure is misspecified, and it is more efficient than GEE when the correlation structure is misspecified. Based on Qu, A., Lindsay, B.G. and Li, B. (2000) <doi:10.1093/biomet/87.4.823>.
This package provides a collection of routines for finding reference limits using, where appropriate, QQ methodology. All use a data vector X of cases from the reference population. The default is to get the central 95% reference range of the population, namely the 2.5 and 97.5 percentile, with optional adjustment of the range. Along with the reference limits, we want confidence intervals which, for historical reasons, are typically at 90% confidence. A full analysis provides six numbers: â the upper and the lower reference limits, and - each of their confidence intervals. For application details, see Hawkins and Esquivel (2024) <doi:10.1093/jalm/jfad109>.
This software provides tools for quantitative trait mapping in populations such as advanced intercross lines where relatedness among individuals should not be ignored. It can estimate background genetic variance components, impute missing genotypes, simulate genotypes, perform a genome scan for putative quantitative trait loci (QTL), and plot mapping results. It also has functions to calculate identity coefficients from pedigrees, especially suitable for pedigrees that consist of a large number of generations, or estimate identity coefficients from genotypic data in certain circumstances.
Finding hidden clusters in structured data can be hindered by the presence of masking variables. If not detected, masking variables are used to calculate the overall similarities between units, and therefore the cluster attribution is more imprecise. The algorithm q-vars implements an optimization method to find the variables that most separate units between clusters. In this way, masking variables can be discarded from the data frame and the clustering is more accurate. Tests can be found in Benati et al.(2017) <doi:10.1080/01605682.2017.1398206>.
Fits classical sparse regression models with efficient active set algorithms by solving quadratic problems as described by Grandvalet, Chiquet and Ambroise (2017) <doi:10.48550/arXiv.1210.2077>. Also provides a few methods for model selection purpose (cross-validation, stability selection).
Property based testing, inspired by the original QuickCheck'. This package builds on the property based testing framework provided by hedgehog and is designed to seamlessly integrate with testthat'.
Provide a variety of Q-matrix validation methods for the generalized cognitive diagnosis models, including the method based on the generalized deterministic input, noisy, and gate model (G-DINA) by de la Torre (2011) <DOI:10.1007/s11336-011-9207-7> discrimination index (the GDI method) by de la Torre and Chiu (2016) <DOI:10.1007/s11336-015-9467-8>, the Hull method by Najera et al. (2021) <DOI:10.1111/bmsp.12228>, the stepwise Wald test method (the Wald method) by Ma and de la Torre (2020) <DOI:10.1111/bmsp.12156>, the multiple logistic regressionâ based Qâ matrix validation method (the MLR-B method) by Tu et al. (2022) <DOI:10.3758/s13428-022-01880-x>, the beta method based on signal detection theory by Li and Chen (2024) <DOI:10.1111/bmsp.12371> and Q-matrix validation based on relative fit index by Chen et al. (2013) <DOI:10.1111/j.1745-3984.2012.00185.x>. Different research methods and iterative procedures during Q-matrix validating are available <DOI:10.3758/s13428-024-02547-5>.
This package provides a toolkit for analysis and visualization of data from fluorophore-assisted seed amplification assays, such as Real-Time Quaking-Induced Conversion (RT-QuIC) and Fluorophore-Assisted Protein Misfolding Cyclic Amplification (PMCA). QuICSeedR addresses limitations in existing software by automating data processing, supporting large-scale analysis, and enabling comparative studies of analysis methods. It incorporates methods described in Henderson et al. (2015) <doi:10.1099/vir.0.069906-0>, Li et al. (2020) <doi:10.1038/s41598-021-96127-8>, Rowden et al. (2023) <doi:10.3390/pathogens12020309>, Haley et al. (2013) <doi:10.1371/journal.pone.0081488>, and Mair and Wilcox (2020) <doi:10.3758/s13428-019-01246-w>. Please refer to the original publications for details.
This package provides functions for simulation, estimation, and model selection of finite mixtures of Tukey g-and-h distributions.
Conduct multiple quantitative trait loci (QTL) mapping under the framework of random-QTL-effect linear mixed model. First, each position on the genome is detected in order to obtain a negative logarithm P-value curve against genome position. Then, all the peaks on each effect (additive or dominant) curve are viewed as potential QTL, all the effects of the potential QTL are included in a multi-QTL model, their effects are estimated by empirical Bayes in doubled haploid population or by adaptive lasso in F2 population, and true QTL are identified by likelihood radio test. See Wen et al. (2018) <doi:10.1093/bib/bby058>.
G-computation for a set of time-fixed exposures with quantile-based basis functions, possibly under linearity and homogeneity assumptions. This approach estimates a regression line corresponding to the expected change in the outcome (on the link basis) given a simultaneous increase in the quantile-based category for all exposures. Works with continuous, binary, and right-censored time-to-event outcomes. Reference: Alexander P. Keil, Jessie P. Buckley, Katie M. OBrien, Kelly K. Ferguson, Shanshan Zhao, and Alexandra J. White (2019) A quantile-based g-computation approach to addressing the effects of exposure mixtures; <doi:10.1289/EHP5838>.
This package provides a collection of (wrapper) functions the creator found useful for quickly placing data summaries and formatted regression results into .Rnw or .Rmd files. Functions for generating commonly used graphics, such as receiver operating curves or Bland-Altman plots, are also provided by qwraps2'. qwraps2 is a updated version of a package qwraps'. The original version qwraps was never submitted to CRAN but can be found at <https://github.com/dewittpe/qwraps/>. The implementation and limited scope of the functions within qwraps2 <https://github.com/dewittpe/qwraps2/> is fundamentally different from qwraps'.
This package provides methods for estimation of mean- and quantile-optimal treatment regimes from censored data. Specifically, we have developed distinct functions for three types of right censoring for static treatment using quantile criterion: (1) independent/random censoring, (2) treatment-dependent random censoring, and (3) covariates-dependent random censoring. It also includes a function to estimate quantile-optimal dynamic treatment regimes for independent censored data. Finally, this package also includes a simulation data generative model of a dynamic treatment experiment proposed in literature.
Quasi-Cauchy quantile regression, proposed by de Oliveira, Ospina, Leiva, Figueroa-Zuniga and Castro (2023) <doi:10.3390/fractalfract7090667>. This regression model is useful for the case where you want to model data of a nature limited to the intervals [0,1], (0,1], [0,1) or (0,1) and you want to use a quantile approach.
High-throughput analysis of growth curves and fluorescence data using three methods: linear regression, growth model fitting, and smooth spline fit. Analysis of dose-response relationships via smoothing splines or dose-response models. Complete data analysis workflows can be executed in a single step via user-friendly wrapper functions. The results of these workflows are summarized in detailed reports as well as intuitively navigable R data containers. A shiny application provides access to all features without requiring any programming knowledge. The package is described in further detail in Wirth et al. (2023) <doi:10.1038/s41596-023-00850-7>.
Automates many of the tasks associated with quantitative discourse analysis of transcripts containing discourse including frequency counts of sentence types, words, sentences, turns of talk, syllables and other assorted analysis tasks. The package provides parsing tools for preparing transcript data. Many functions enable the user to aggregate data by any number of grouping variables, providing analysis and seamless integration with other R packages that undertake higher level analysis and visualization of text. This affords the user a more efficient and targeted analysis. qdap is designed for transcript analysis, however, many functions are applicable to other areas of Text Mining/ Natural Language Processing.
Analysis of Q methodology, used to identify distinct perspectives existing within a group. This methodology is used across social, health and environmental sciences to understand diversity of attitudes, discourses, or decision-making styles (for more information, see <https://qmethod.org/>). A single function runs the full analysis. Each step can be run separately using the corresponding functions: for automatic flagging of Q-sorts (manual flagging is optional), for statement scores, for distinguishing and consensus statements, and for general characteristics of the factors. The package allows to choose either principal components or centroid factor extraction, manual or automatic flagging, a number of mathematical methods for rotation (or none), and a number of correlation coefficients for the initial correlation matrix, among many other options. Additional functions are available to import and export data (from raw *.CSV, HTMLQ and FlashQ *.CSV, PQMethod *.DAT and easy-htmlq *.JSON files), to print and plot, to import raw data from individual *.CSV files, and to make printable cards. The package also offers functions to print Q cards and to generate Q distributions for study administration. See further details in the package documentation, and in the web pages below, which include a cookbook, guidelines for more advanced analysis (how to perform manual flagging or change the sign of factors), data management, and a graphical user interface (GUI) for online and offline use.
An easy framework to set a quality control workflow on a dataset. Includes a various range of functions that allow to establish an adaptable data quality control.
Fits non-crossing regression quantiles as a function of linear covariates and multiple smooth terms, including varying coefficients, via B-splines with L1-norm difference penalties. Random intercepts and variable selection are allowed via the lasso penalties. The smoothing parameters are estimated as part of the model fitting, see Muggeo and others (2021) <doi:10.1177/1471082X20929802>. Monotonicity and concavity constraints on the fitted curves are allowed, see Muggeo and others (2013) <doi:10.1007/s10651-012-0232-1>, and also <doi:10.13140/RG.2.2.12924.85122> or <doi:10.13140/RG.2.2.29306.21445> some code examples.
This package implements indices of qualitative variation proposed by Wilcox (1973).