_            _    _        _         _
      /\ \         /\ \ /\ \     /\_\      / /\
      \_\ \       /  \ \\ \ \   / / /     / /  \
      /\__ \     / /\ \ \\ \ \_/ / /     / / /\ \__
     / /_ \ \   / / /\ \ \\ \___/ /     / / /\ \___\
    / / /\ \ \ / / /  \ \_\\ \ \_/      \ \ \ \/___/
   / / /  \/_// / /   / / / \ \ \        \ \ \
  / / /      / / /   / / /   \ \ \   _    \ \ \
 / / /      / / /___/ / /     \ \ \ /_/\__/ / /
/_/ /      / / /____\/ /       \ \_\\ \/___/ /
\_\/       \/_________/         \/_/ \_____\/

Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.

API method:

GET /api/packages?search=hello&page=1&limit=20

where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned in response headers.

If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.


r-bootur 1.0.4
Propagated dependencies: r-urca@1.3-4 r-rcppthread@2.2.0 r-rcppparallel@5.1.11-1 r-rcpparmadillo@15.2.2-1 r-rcpp@1.1.0 r-parallelly@1.45.1
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://github.com/smeekes/bootUR
Licenses: GPL 2+
Synopsis: Bootstrap Unit Root Tests
Description:

Set of functions to perform various bootstrap unit root tests for both individual time series (including augmented Dickey-Fuller test and union tests), multiple time series and panel data; see Smeekes and Wilms (2023) <doi:10.18637/jss.v106.i12>, Palm, Smeekes and Urbain (2008) <doi:10.1111/j.1467-9892.2007.00565.x>, Palm, Smeekes and Urbain (2011) <doi:10.1016/j.jeconom.2010.11.010>, Moon and Perron (2012) <doi:10.1016/j.jeconom.2012.01.008>, Smeekes and Taylor (2012) <doi:10.1017/S0266466611000387> and Smeekes (2015) <doi:10.1111/jtsa.12110> for key references.

r-blsloadr 0.2
Propagated dependencies: r-zoo@1.8-14 r-tigris@2.2.1 r-tidyselect@1.2.1 r-stringr@1.6.0 r-sf@1.0-23 r-rvest@1.0.5 r-rstudioapi@0.17.1 r-readxl@1.4.5 r-lubridate@1.9.4 r-httr@1.4.7 r-htmltools@0.5.8.1 r-dplyr@1.1.4 r-data-table@1.17.8
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://schmidtdetr.github.io/BLSloadR/
Licenses: Expat
Synopsis: Download Time Series Data from the U.S. Bureau of Labor Statistics
Description:

These functions provide a convenient interface for downloading data from the U.S. Bureau of Labor Statistics <https://www.bls.gov>. The functions in this package utilize flat files produced by the Bureau of Labor Statistics, which contain full series history. These files include employment, unemployment, wages, prices, industry and occupational data at a national, state, and sub-state level, depending on the series. Individual functions are included for those programs which have data available at the state level. The core functions provide direct access to the Current Employment Statistics (CES) <https://www.bls.gov/ces/>, Local Area Unemployment Statistics (LAUS) <https://www.bls.gov/lau/>, Occupational Employment and Wage Statistics (OEWS) <https://www.bls.gov/oes/> and Alternative Measures of Labor Underutilization (SALT) <https://www.bls.gov/lau/stalt.htm> data produced by the Bureau of Labor Statistics.

r-botor 0.4.1
Propagated dependencies: r-reticulate@1.44.1 r-logger@0.4.1 r-jsonlite@2.0.0 r-checkmate@2.3.3
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://daroczig.github.io/botor/
Licenses: AGPL 3
Synopsis: 'AWS Python SDK' ('boto3') for R
Description:

Fork-safe, raw access to the Amazon Web Services ('AWS') SDK via the boto3 Python module, and convenient helper functions to query the Simple Storage Service ('S3') and Key Management Service ('KMS'), partial support for IAM', the Systems Manager Parameter Store and Secrets Manager'.

r-blastula 0.3.6
Propagated dependencies: r-uuid@1.2-1 r-stringr@1.6.0 r-rmarkdown@2.30 r-rlang@1.1.6 r-mime@0.13 r-magrittr@2.0.4 r-jsonlite@2.0.0 r-httr@1.4.7 r-htmltools@0.5.8.1 r-here@1.0.2 r-getpass@0.2-4 r-fs@1.6.6 r-dplyr@1.1.4 r-digest@0.6.39 r-curl@7.0.0 r-commonmark@2.0.0 r-base64enc@0.1-3
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://github.com/rstudio/blastula
Licenses: Expat
Synopsis: Easily Send HTML Email Messages
Description:

Compose and send out responsive HTML email messages that render perfectly across a range of email clients and device sizes. Helper functions let the user insert embedded images, web link buttons, and ggplot2 plot objects into the message body. Messages can be sent through an SMTP server, through the Posit Connect service, or through the Mailgun API service <https://www.mailgun.com/>.

r-brms-mmrm 1.1.1
Propagated dependencies: r-zoo@1.8-14 r-trialr@0.1.6 r-tidyselect@1.2.1 r-tidyr@1.3.1 r-tibble@3.3.0 r-rlang@1.1.6 r-purrr@1.2.0 r-posterior@1.6.1 r-mass@7.3-65 r-ggridges@0.5.7 r-ggplot2@4.0.1 r-dplyr@1.1.4 r-brms@2.23.0
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://openpharma.github.io/brms.mmrm/
Licenses: Expat
Synopsis: Bayesian MMRMs using 'brms'
Description:

The mixed model for repeated measures (MMRM) is a popular model for longitudinal clinical trial data with continuous endpoints, and brms is a powerful and versatile package for fitting Bayesian regression models. The brms.mmrm R package leverages brms to run MMRMs, and it supports a simplified interfaced to reduce difficulty and align with the best practices of the life sciences. References: Bürkner (2017) <doi:10.18637/jss.v080.i01>, Mallinckrodt (2008) <doi:10.1177/009286150804200402>.

r-biganalytics 1.1.22
Propagated dependencies: r-rcpp@1.1.0 r-foreach@1.5.2 r-bigmemory@4.6.4 r-biglm@0.9-3 r-bh@1.87.0-1
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: http://www.bigmemory.org
Licenses: LGPL 3 ASL 2.0
Synopsis: Utilities for 'big.matrix' Objects from Package 'bigmemory'
Description:

Extend the bigmemory package with various analytics. Functions bigkmeans and binit may also be used with native R objects. For tapply'-like functions, the bigtabulate package may also be helpful. For linear algebra support, see bigalgebra'. For mutex (locking) support for advanced shared-memory usage, see synchronicity'.

r-bspbss 1.0.6
Propagated dependencies: r-svd@0.5.8 r-rstiefel@1.0.1 r-rcpparmadillo@15.2.2-1 r-rcpp@1.1.0 r-oro-nifti@0.11.4 r-neurobase@1.34.0 r-movmf@0.2-9 r-ica@1.0-3 r-gtools@3.9.5 r-gridextra@2.3 r-gplots@3.2.0 r-glmnet@4.1-10 r-ggplot2@4.0.1 r-bayesgpfit@1.1.0
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://cran.r-project.org/package=BSPBSS
Licenses: GPL 3+
Synopsis: Bayesian Spatial Blind Source Separation
Description:

Gibbs sampling for Bayesian spatial blind source separation (BSP-BSS). BSP-BSS is designed for spatially dependent signals in high dimensional and large-scale data, such as neuroimaging. The method assumes the expectation of the observed images as a linear mixture of multiple sparse and piece-wise smooth latent source signals, and constructs a Bayesian nonparametric prior by thresholding Gaussian processes. Details can be found in our paper: Wu, B., Guo, Y., & Kang, J. (2024). Bayesian spatial blind source separation via the thresholded gaussian process. Journal of the American Statistical Association, 119(545), 422-433.

r-binhf 1.0-3
Propagated dependencies: r-wavethresh@4.7.3 r-ebayesthresh@1.4-12 r-adlift@1.4-6
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://cran.r-project.org/package=binhf
Licenses: GPL 2+
Synopsis: Haar-Fisz Functions for Binomial Data
Description:

Binomial Haar-Fisz transforms for Gaussianization as in Nunes and Nason (2009).

r-bolstad2 1.0-29
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://github.com/jmcurran/Bolstad2
Licenses: GPL 2+
Synopsis: Bolstad Functions
Description:

This package provides a set of R functions and data sets for the book "Understanding Computational Bayesian Statistics." This book was written by Bill (WM) Bolstad and published in 2009 by John Wiley & Sons (ISBN 978-0470046098).

r-bootcomb 1.1.2
Propagated dependencies: r-mass@7.3-65
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://cran.r-project.org/package=bootComb
Licenses: GPL 3
Synopsis: Combine Parameter Estimates via Parametric Bootstrap
Description:

Propagate uncertainty from several estimates when combining these estimates via a function. This is done by using the parametric bootstrap to simulate values from the distribution of each estimate to build up an empirical distribution of the combined parameter. Finally either the percentile method is used or the highest density interval is chosen to derive a confidence interval for the combined parameter with the desired coverage. Gaussian copulas are used for when parameters are assumed to be dependent / correlated. References: Davison and Hinkley (1997,ISBN:0-521-57471-4) for the parametric bootstrap and percentile method, Gelman et al. (2014,ISBN:978-1-4398-4095-5) for the highest density interval, Stockdale et al. (2020)<doi:10.1016/j.jhep.2020.04.008> for an example of combining conditional prevalences.

r-biostats101 0.1.1
Propagated dependencies: r-tidyr@1.3.1 r-ggplot2@4.0.1 r-dplyr@1.1.4
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://cran.r-project.org/package=biostats101
Licenses: Expat
Synopsis: Practical Functions for Biostatistics Beginners
Description:

This package provides a set of user-friendly functions designed to fill gaps in existing introductory biostatistics R tools, making it easier for newcomers to perform basic biostatistical analyses without needing advanced programming skills. The methods implemented in this package are based on the works: Connor (1987) <doi:10.2307/2531961> Fleiss, Levin, & Paik (2013, ISBN:978-1-118-62561-3) Levin & Chen (1999) <doi:10.1080/00031305.1999.10474431> McNemar (1947) <doi:10.1007/BF02295996>.

r-biogrowth 1.0.8
Propagated dependencies: r-tidyr@1.3.1 r-tibble@3.3.0 r-rlang@1.1.6 r-purrr@1.2.0 r-mvtnorm@1.3-3 r-mass@7.3-65 r-lifecycle@1.0.4 r-lamw@2.2.5 r-ggplot2@4.0.1 r-formula-tools@1.7.1 r-fme@1.3.6.4 r-dplyr@1.1.4 r-desolve@1.40 r-cowplot@1.2.0
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://cran.r-project.org/package=biogrowth
Licenses: GPL 3
Synopsis: Modelling of Population Growth
Description:

Modelling of population growth under static and dynamic environmental conditions. Includes functions for model fitting and making prediction under isothermal and dynamic conditions. The methods (algorithms & models) are based on predictive microbiology (See Perez-Rodriguez and Valero (2012, ISBN:978-1-4614-5519-6)).

r-blendr 1.0.0
Propagated dependencies: r-tibble@3.3.0 r-survhe@2.0.5 r-sn@2.1.1 r-manipulate@1.0.1 r-ggplot2@4.0.1 r-flexsurv@2.3.2 r-dplyr@1.1.4
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://github.com/StatisticsHealthEconomics/blendR/
Licenses: GPL 3+
Synopsis: Blended Survival Curves
Description:

Create a blended curve from two survival curves, which is particularly useful for survival extrapolation in health technology assessment. The main idea is to mix a flexible model that fits the observed data well with a parametric model that encodes assumptions about long-term survival. The two curves are blended into a single survival curve that is identical to the first model over the range of observed times and gradually approaches the parametric model over the extrapolation period based on a given weight function. This approach allows for the inclusion of external information, such as data from registries or expert opinion, to guide long-term extrapolations, especially when dealing with immature trial data. See Che et al. (2022) <doi:10.1177/0272989X221134545>.

r-bolasso 0.4.0
Propagated dependencies: r-tibble@3.3.0 r-progressr@0.18.0 r-matrix@1.7-4 r-glmnet@4.1-10 r-ggplot2@4.0.1 r-generics@0.1.4 r-gamlr@1.13-8 r-future-apply@1.20.0
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://www.dmolitor.com/bolasso/
Licenses: Expat
Synopsis: Model Consistent Lasso Estimation Through the Bootstrap
Description:

This package implements the bolasso algorithm for consistent variable selection and estimation accuracy. Includes support for many parallel backends via the future package. For details see: Bach (2008), Bolasso: model consistent Lasso estimation through the bootstrap', <doi:10.48550/arXiv.0804.1302>.

r-bigr 0.6.2
Propagated dependencies: r-vcfr@1.15.0 r-tidyr@1.3.1 r-tibble@3.3.0 r-stringr@1.6.0 r-rsamtools@2.26.0 r-rlang@1.1.6 r-reshape2@1.4.5 r-readr@2.1.6 r-rdpack@2.6.4 r-quadprog@1.5-8 r-pwalign@1.6.0 r-janitor@2.2.1 r-dplyr@1.1.4 r-biostrings@2.78.0
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://github.com/Breeding-Insight/BIGr
Licenses: FSDG-compatible
Synopsis: Breeding Insight Genomics Functions for Polyploid and Diploid Species
Description:

This package provides functions developed within Breeding Insight to analyze diploid and polyploid breeding and genetic data. BIGr provides the ability to filter variant call format (VCF) files, extract single nucleotide polymorphisms (SNPs) from diversity arrays technology missing allele discovery count (DArT MADC) files, and manipulate genotype data for both diploid and polyploid species. It also serves as the core dependency for the BIGapp Shiny app, which provides a user-friendly interface for performing routine genotype analysis tasks such as dosage calling, filtering, principal component analysis (PCA), genome-wide association studies (GWAS), and genomic prediction. For more details about the included breedTools functions, see Funkhouser et al. (2017) <doi:10.2527/tas2016.0003>, and the updog output format, see Gerard et al. (2018) <doi:10.1534/genetics.118.301468>.

r-birdscanr 0.3.0
Propagated dependencies: r-tidyr@1.3.1 r-tibble@3.3.0 r-suntools@1.1.0 r-sp@2.2-0 r-rstudioapi@0.17.1 r-rpostgresql@0.7-8 r-rodbc@1.3-26.1 r-rlang@1.1.6 r-reshape2@1.4.5 r-modi@0.1.3 r-magrittr@2.0.4 r-ggplot2@4.0.1 r-dplyr@1.1.4 r-dbi@1.2.3
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://github.com/BirdScanCommunity/birdscanR
Licenses: GPL 3
Synopsis: Migration Traffic Rate Calculation Package for 'Birdscan MR1' Radars
Description:

Extract data from Birdscan MR1 SQL vertical-looking radar databases, filter, and process them to Migration Traffic Rates (#objects per hour and km) or density (#objects per km3) of, for example birds, and insects. Object classifications in the Birdscan MR1 databases are based on the dataset of Haest et al. (2021) <doi:10.5281/zenodo.5734960>). Migration Traffic Rates and densities can be calculated separately for different height bins (with a height resolution of choice) as well as over time periods of choice (e.g., 1/2 hour, 1 hour, 1 day, day/night, the full time period of observation, and anything in between). Two plotting functions are also included to explore the data in the SQL databases and the resulting Migration Traffic Rate results. For details on the Migration Traffic Rate calculation procedures, see Schmid et al. (2019) <doi:10.1111/ecog.04025>.

r-bayesimages 0.7-0
Propagated dependencies: r-rcpparmadillo@15.2.2-1 r-rcpp@1.1.0
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://bitbucket.org/Azeari/bayesimages
Licenses: GPL 2+ FSDG-compatible
Synopsis: Bayesian Methods for Image Segmentation using a Potts Model
Description:

Various algorithms for segmentation of 2D and 3D images, such as computed tomography and satellite remote sensing. This package implements Bayesian image analysis using the hidden Potts model with external field prior of Moores et al. (2015) <doi:10.1016/j.csda.2014.12.001>. Latent labels are sampled using chequerboard updating or Swendsen-Wang. Algorithms for the smoothing parameter include pseudolikelihood, path sampling, the exchange algorithm, approximate Bayesian computation (ABC-MCMC and ABC-SMC), and the parametric functional approximate Bayesian (PFAB) algorithm. Refer to Moores, Pettitt & Mengersen (2020) <doi:10.1007/978-3-030-42553-1_6> for an overview and also to <doi:10.1007/s11222-014-9525-6> and <doi:10.1214/18-BA1130> for further details of specific algorithms.

r-bfpack 1.5.0
Propagated dependencies: r-sandwich@3.1-1 r-qrm@0.4-35 r-pracma@2.4.6 r-mvtnorm@1.3-3 r-metabma@0.6.9 r-mass@7.3-65 r-lme4@1.1-37 r-extradistr@1.10.0 r-ergm@4.10.1 r-coda@0.19-4.1 r-berryfunctions@1.22.13 r-bergm@5.0.7 r-bain@0.2.11
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://github.com/jomulder/BFpack
Licenses: GPL 3+
Synopsis: Flexible Bayes Factor Testing of Scientific Expectations
Description:

Implementation of default Bayes factors for testing statistical hypotheses under various statistical models. The package is intended for applied quantitative researchers in the social and behavioral sciences, medical research, and related fields. The Bayes factor tests can be executed for statistical models such as univariate and multivariate normal linear models, correlation analysis, generalized linear models, special cases of linear mixed models, survival models, relational event models. Parameters that can be tested are location parameters (e.g., group means, regression coefficients), variances (e.g., group variances), and measures of association (e.g,. polychoric/polyserial/biserial/tetrachoric/product moments correlations), among others. The statistical underpinnings are described in O'Hagan (1995) <DOI:10.1111/j.2517-6161.1995.tb02017.x>, De Santis and Spezzaferri (2001) <DOI:10.1016/S0378-3758(00)00240-8>, Mulder and Xin (2022) <DOI:10.1080/00273171.2021.1904809>, Mulder and Gelissen (2019) <DOI:10.1080/02664763.2021.1992360>, Mulder (2016) <DOI:10.1016/j.jmp.2014.09.004>, Mulder and Fox (2019) <DOI:10.1214/18-BA1115>, Mulder and Fox (2013) <DOI:10.1007/s11222-011-9295-3>, Boeing-Messing, van Assen, Hofman, Hoijtink, and Mulder (2017) <DOI:10.1037/met0000116>, Hoijtink, Mulder, van Lissa, and Gu (2018) <DOI:10.1037/met0000201>, Gu, Mulder, and Hoijtink (2018) <DOI:10.1111/bmsp.12110>, Hoijtink, Gu, and Mulder (2018) <DOI:10.1111/bmsp.12145>, and Hoijtink, Gu, Mulder, and Rosseel (2018) <DOI:10.1037/met0000187>. When using the packages, please refer to the package Mulder et al. (2021) <DOI:10.18637/jss.v100.i18> and the relevant methodological papers.

r-bas 2.0.0
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://merliseclyde.github.io/BAS/
Licenses: GPL 3+
Synopsis: Bayesian Variable Selection and Model Averaging using Bayesian Adaptive Sampling
Description:

Package for Bayesian Variable Selection and Model Averaging in linear models and generalized linear models using stochastic or deterministic sampling without replacement from posterior distributions. Prior distributions on coefficients are from Zellner's g-prior or mixtures of g-priors corresponding to the Zellner-Siow Cauchy Priors or the mixture of g-priors from Liang et al (2008) <DOI:10.1198/016214507000001337> for linear models or mixtures of g-priors from Li and Clyde (2019) <DOI:10.1080/01621459.2018.1469992> in generalized linear models. Other model selection criteria include AIC, BIC and Empirical Bayes estimates of g. Sampling probabilities may be updated based on the sampled models using sampling w/out replacement or an efficient MCMC algorithm which samples models using a tree structure of the model space as an efficient hash table. See Clyde, Ghosh and Littman (2010) <DOI:10.1198/jcgs.2010.09049> for details on the sampling algorithms. Uniform priors over all models or beta-binomial prior distributions on model size are allowed, and for large p truncated priors on the model space may be used to enforce sampling models that are full rank. The user may force variables to always be included in addition to imposing constraints that higher order interactions are included only if their parents are included in the model. This material is based upon work supported by the National Science Foundation under Division of Mathematical Sciences grant 1106891. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

r-banam 0.2.2
Propagated dependencies: r-tmvtnorm@1.7 r-sna@2.8 r-rarpack@0.11-0 r-psych@2.5.6 r-mvtnorm@1.3-3 r-matrixcalc@1.0-6 r-matrix@1.7-4 r-extradistr@1.10.0 r-bfpack@1.5.0 r-bain@0.2.11
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://cran.r-project.org/package=BANAM
Licenses: GPL 3+
Synopsis: Bayesian Analysis of the Network Autocorrelation Model
Description:

The network autocorrelation model (NAM) can be used for studying the degree of social influence regarding an outcome variable based on one or more known networks. The degree of social influence is quantified via the network autocorrelation parameters. In case of a single network, the Bayesian methods of Dittrich, Leenders, and Mulder (2017) <DOI:10.1016/j.socnet.2016.09.002> and Dittrich, Leenders, and Mulder (2019) <DOI:10.1177/0049124117729712> are implemented using a normal, flat, or independence Jeffreys prior for the network autocorrelation. In the case of multiple networks, the Bayesian methods of Dittrich, Leenders, and Mulder (2020) <DOI:10.1177/0081175020913899> are implemented using a multivariate normal prior for the network autocorrelation parameters. Flat priors are implemented for estimating the coefficients. For Bayesian testing of equality and order-constrained hypotheses, the default Bayes factor of Gu, Mulder, and Hoijtink, (2018) <DOI:10.1111/bmsp.12110> is used with the posterior mean and posterior covariance matrix of the NAM parameters based on flat priors as input.

r-blrshiny 0.1.0
Propagated dependencies: r-shiny@1.11.1 r-rmarkdown@2.30 r-rhandsontable@0.3.8 r-ggplot2@4.0.1 r-e1071@1.7-16 r-dplyr@1.1.4 r-caret@7.0-1
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://cran.r-project.org/package=BLRShiny
Licenses: GPL 2
Synopsis: Interactive Document for Working with Binary Logistic Regression Analysis
Description:

An interactive document on the topic of binary logistic regression analysis using rmarkdown and shiny packages. Runtime examples are provided in the package function as well as at <https://analyticmodels.shinyapps.io/BinaryLogisticRegressionModelling/>.

r-bff 4.5.0
Propagated dependencies: r-rlang@1.1.6 r-matrix@1.7-4 r-gsl@2.1-9 r-ggplot2@4.0.1
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://github.com/rshudde/BFF
Licenses: GPL 2+
Synopsis: Bayes Factor Functions
Description:

Bayes factors represent the ratio of probabilities assigned to data by competing scientific hypotheses. However, one drawback of Bayes factors is their dependence on prior specifications that define null and alternative hypotheses. Additionally, there are challenges in their computation. To address these issues, we define Bayes factor functions (BFFs) directly from common test statistics. BFFs express Bayes factors as a function of the prior densities used to define the alternative hypotheses. These prior densities are centered on standardized effects, which serve as indices for the BFF. Therefore, BFFs offer a summary of evidence in favor of alternative hypotheses that correspond to a range of scientifically interesting effect sizes. Such summaries remove the need for arbitrary thresholds to determine "statistical significance." BFFs are available in closed form and can be easily computed from z, t, chi-squared, and F statistics. They depend on hyperparameters "r" and "tau^2", which determine the shape and scale of the prior distributions defining the alternative hypotheses. Plots of BFFs versus effect size provide informative summaries of hypothesis tests that can be easily aggregated across studies.

r-bsam 1.1.3
Dependencies: jags@4.3.1
Propagated dependencies: r-tibble@3.3.0 r-sp@2.2-0 r-rworldxtra@1.01 r-rjags@4-17 r-mvtnorm@1.3-3 r-msm@1.8.2 r-lubridate@1.9.4 r-gridextra@2.3 r-ggplot2@4.0.1 r-dplyr@1.1.4 r-coda@0.19-4.1
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: <https://github.com/ianjonsen/bsam>
Licenses: GPL 2
Synopsis: Bayesian State-Space Models for Animal Movement
Description:

This package provides tools to fit Bayesian state-space models to animal tracking data. Models are provided for location filtering, location filtering and behavioural state estimation, and their hierarchical versions. The models are primarily intended for fitting to ARGOS satellite tracking data but options exist to fit to other tracking data types. For Global Positioning System data, consider the moveHMM package. Simplified Markov Chain Monte Carlo convergence diagnostic plotting is provided but users are encouraged to explore tools available in packages such as coda and boa'.

r-bedassle 1.6.1
Propagated dependencies: r-matrixcalc@1.0-6 r-mass@7.3-65 r-emdbook@1.3.14
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://cran.r-project.org/package=BEDASSLE
Licenses: GPL 2+
Synopsis: Quantifies Effects of Geo/Eco Distance on Genetic Differentiation
Description:

This package provides functions that allow users to quantify the relative contributions of geographic and ecological distances to empirical patterns of genetic differentiation on a landscape. Specifically, we use a custom Markov chain Monte Carlo (MCMC) algorithm, which is used to estimate the parameters of the inference model, as well as functions for performing MCMC diagnosis and assessing model adequacy.

Page: 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844
Total results: 68249