Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
We provide a toolbox to fit a continuous-time fractionally integrated ARMA process (CARFIMA) on univariate and irregularly spaced time series data via both frequentist and Bayesian machinery. A general-order CARFIMA(p, H, q) model for p>q is specified in Tsai and Chan (2005) <doi:10.1111/j.1467-9868.2005.00522.x> and it involves p+q+2 unknown model parameters, i.e., p AR parameters, q MA parameters, Hurst parameter H, and process uncertainty (standard deviation) sigma. Also, the model can account for heteroscedastic measurement errors, if the information about measurement error standard deviations is known. The package produces their maximum likelihood estimates and asymptotic uncertainties using a global optimizer called the differential evolution algorithm. It also produces posterior samples of the model parameters via Metropolis-Hastings within a Gibbs sampler equipped with adaptive Markov chain Monte Carlo. These fitting procedures, however, may produce numerical errors if p>2. The toolbox also contains a function to simulate discrete time series data from CARFIMA(p, H, q) process given the model parameters and observation times.
Random sampling from distributions with user-specified population covariance matrix. Marginal information may be fully specified, for which the package implements the VITA (VIne-To-Anything) algorithm Grønneberg and Foldnes (2017) <doi:10.1007/s11336-017-9569-6>. See also Grønneberg, Foldnes and Marcoulides (2022) <doi:10.18637/jss.v102.i03>. Alternatively, marginal skewness and kurtosis may be specified, for which the package implements the IG (independent generator) and PLSIM (piecewise linear) algorithms, see Foldnes and Olsson (2016) <doi:10.1080/00273171.2015.1133274> and Foldnes and Grønneberg (2021) <doi:10.1080/10705511.2021.1949323>, respectively.
Tool to assessing whether the results of a study could be influenced by collinearity. Simulations under a given hypothesized truth regarding effects of an exposure on the outcome are used and the resulting curves of lagged effects are visualized. A user's manual is provided, which includes detailed examples (e.g. a cohort study looking for windows of vulnerability to air pollution, a time series study examining the linear association of air pollution with hospital admissions, and a time series study examining the non-linear association between temperature and mortality). The methods are described in Basagana and Barrera-Gomez (2021) <doi:10.1093/ije/dyab179>.
Extends the functionality of base R lists and provides specialized data structures deque', set', dict', and dict.table', the latter to extend the data.table package.
Facilitate Pharmacokinetic (PK) and Pharmacodynamic (PD) modeling and simulation with powerful tools for Nonlinear Mixed-Effects (NLME) modeling. The package provides access to the same advanced Maximum Likelihood algorithms used by the NLME-Engine in the Phoenix platform. These tools support a range of analyses, from parametric methods to individual and pooled data, and support integrated use within the Pirana pharmacometric workbench <doi:10.1002/psp4.70067>. Execution is supported both locally or on remote machines.
Enable the use of Shepherd.js to create tours in Shiny applications.
This package provides a GUI with which users can construct and interact with Canonical Correspondence Analysis and Canonical Non-Symmetrical Correspondence Analysis and provides inferential results by using Bootstrap Methods.
Estimate one or two cutpoints of a metric or ordinal-scaled variable in the multivariable context of survival data or time-to-event data. Visualise the cutpoint estimation process using contour plots, index plots, and spline plots. It is also possible to estimate cutpoints based on the assumption of a U-shaped or inverted U-shaped relationship between the predictor and the hazard ratio. Govindarajulu, U., and Tarpey, T. (2022) <doi:10.1080/02664763.2020.1846690>.
This package produces statistical indicators of the impact of migration on the socio-demographic composition of an area. Three measures can be used: ratios, percentages and the Duncan index of dissimilarity. The input data files are assumed to be in an origin-destination matrix format, with each cell representing a flow count between an origin and a destination area. Columns are expected to represent origins, and rows are expected to represent destinations. The first row and column are assumed to contain labels for each area. See Rodriguez-Vignoli and Rowe (2018) <doi:10.1080/00324728.2017.1416155> for technical details.
Utility functions for the statistical analysis of corpus frequency data. This package is a companion to the open-source course "Statistical Inference: A Gentle Introduction for Computational Linguists and Similar Creatures" ('SIGIL').
This package provides functions for the estimation of conditional copulas models, various estimators of conditional Kendall's tau (proposed in Derumigny and Fermanian (2019a, 2019b, 2020) <doi:10.1515/demo-2019-0016>, <doi:10.1016/j.csda.2019.01.013>, <doi:10.1016/j.jmva.2020.104610>), test procedures for the simplifying assumption (proposed in Derumigny and Fermanian (2017) <doi:10.1515/demo-2017-0011> and Derumigny, Fermanian and Min (2022) <doi:10.1002/cjs.11742>), and measures of non-simplifyingness (proposed in Derumigny (2025) <doi:10.48550/arXiv.2504.07704>).
Building on top of the RcppArmadillo linear algebra functionalities to do fast spatial interaction models in the context of urban analytics, geography, transport modelling. It uses the Newton root search algorithm to determine the optimal cost exponent and can run country level models with thousands of origins and destinations. It aims at implementing an easy approach based on matrices, that can originate from various routing and processing steps earlier in an workflow. Currently, the simplest form of production, destination and doubly constrained models are implemented. Schlosser et al. (2023) <doi:10.48550/arXiv.2309.02112>.
Quick and easy access to datasets that let you replicate the empirical examples in Cameron and Trivedi (2005) "Microeconometrics: Methods and Applications" (ISBN: 9780521848053).The data are available as soon as you install and load the package (lazy-loading) as data frames. The documentation includes reference to chapter sections and page numbers where the datasets are used.
This package provides a tidied subset of the US College Scorecard dataset, containing institutional characteristics, enrollment, student aid, costs, and student outcomes at institutions of higher education in the United States.
Create, query, and modify causal graphs. caugi (Causal Graph Interface) is a causality-first, high performance graph package that provides a simple interface to build, structure, and examine causal relationships.
There are many estimators of false discovery rate. In this package we compute the Nonlocal False Discovery Rate (NFDR) and the estimators of local false discovery rate: Corrected False discovery Rate (CFDR), Re-ranked False Discovery rate (RFDR) and the blended estimator. Bickel, D.R., Rahal, A. (2019) <https://tinyurl.com/kkdc9rk8>.
Implementations of the family of map() functions with frequent saving of the intermediate results. The contained functions let you start the evaluation of the iterations where you stopped (reading the already evaluated ones from cache), and work with the currently evaluated iterations while remaining ones are running in a background job. Parallel computing is also easier with the workers parameter.
The COSSO regularization method automatically estimates and selects important function components by a soft-thresholding penalty in the context of smoothing spline ANOVA models. Implemented models include mean regression, quantile regression, logistic regression and the Cox regression models.
Automates the process of containerizing R projects. The core function of containr is generate_dockerfile()', which analyzes an R project's environment and dependencies via an renv lock file and generates a ready-to-use Dockerfile that encapsulates the computational setup. The package helps researchers build portable and consistent workflows so that analyses can be reliably shared, archived, and rerun across systems. See R Core Team (2025) <https://www.R-project.org/>, Ushey et al. (2025) <https://CRAN.R-project.org/package=renv>, and Docker Inc. (2025) <https://www.docker.com/>.
This package provides a toolbox for developing applications, games, simulations, or agent-based models in the R terminal. Included functions allow users to move the cursor around the terminal screen, change text colors and attributes, clear the screen, hide and show the cursor, map key presses to functions, draw shapes and curves, among others. Most functionalities require users to be in a terminal (not the R GUI).
Calculate the likelihood ratio test p-value and likelihood confidence intervals for misspecified Cox models, as described in Shao and Guo (2025) <doi:10.48550/arXiv.2508.11851>.
Data stored in text file can be processed chunkwise using dplyr commands. These are recorded and executed per data chunk, so large files can be processed with limited memory using the LaF package.
Filter CpGs based on Intra-class Correlation Coefficients (ICCs) when replicates are available. ICCs are calculated by fitting linear mixed effects models to all samples including the un-replicated samples. Including the large number of un-replicated samples improves ICC estimates dramatically. The method accommodates any replicate design.
Simulate species occurrence and abundances (counts) along gradients.