Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
QuantLib bindings are provided for R using Rcpp via an updated variant of the header-only Quantuccia project (put together initially by Peter Caspers) offering an essential subset of QuantLib (and now maintained separately for the calendaring subset). See the included file AUTHORS for a full list of contributors to both QuantLib and Quantuccia'. Note that this package provided an initial viability proof, current work is done (via approximately quarterly releases tracking QuantLib') in the smaller package qlcal which is generally preferred.
Rcmdr menu support for many of the functions in the HH package. The focus is on menu items for functions we use in our introductory courses.
Additional matrix functionality for R including: (1) wrappers for the base matrix function that allow matrices to be created from character strings and lists (the former is especially useful for creating block matrices), (2) better printing of large matrices via the generic "pretty" print function, and (3) a number of convenience functions for users more familiar with other scientific languages like Julia', Matlab'/'Octave', or Python'+'NumPy'.
This package performs the Joint and Individual Variation Explained (JIVE) decomposition on a list of data sets when the data share a dimension, returning low-rank matrices that capture the joint and individual structure of the data [O'Connell, MJ and Lock, EF (2016) <doi:10.1093/bioinformatics/btw324>]. It provides two methods of rank selection when the rank is unknown, a permutation test and a Bayesian Information Criterion (BIC) selection algorithm. Also included in the package are three plotting functions for visualizing the variance attributed to each data source: a bar plot that shows the percentages of the variability attributable to joint and individual structure, a heatmap that shows the structure of the variability, and principal component plots.
Enables binary package installations on Linux distributions. Provides access to RStudio public repositories at <https://packagemanager.posit.co>, and transparent management of system requirements without administrative privileges. Currently supported distributions are CentOS / RHEL', and several RHEL derivatives ('Rocky Linux', AlmaLinux', Oracle Linux', and Amazon Linux'), openSUSE / SLES', Debian', and Ubuntu LTS.
This package implements the network clustering algorithm described in Newman (2006) <doi:10.1103/PhysRevE.74.036104>. The complete iterative algorithm comprises of two steps. In the first step, the network is expressed in terms of its leading eigenvalue and eigenvector and recursively partition into two communities. Partitioning occurs if the maximum positive eigenvalue is greater than the tolerance (10e-5) for the current partition, and if it results in a positive contribution to the Modularity. Given an initial separation using the leading eigen step, rSpectral then continues to maximise for the change in Modularity using a fine-tuning step - or variate thereof. The first stage here is to find the node which, when moved from one community to another, gives the maximum change in Modularity. This nodeâ s community is then fixed and we repeat the process until all nodes have been moved. The whole process is repeated from this new state until the change in the Modularity, between the new and old state, is less than the predefined tolerance. A slight variant of the fine-tuning step, which can improve speed of the calculation, is also provided. Instead of moving each node into each community in turn, we only consider moves of neighbouring nodes, found in different communities, to the community of the current node of interest. The two steps process is repeatedly applied to each new community found, subdivided each community into two new communities, until we are unable to find any division that results in a positive change in Modularity.
This package provides fast implementations of Random Forests, Gradient Boosting, and Linear Random Forests, with an emphasis on inference and interpretability. Additionally contains methods for variable importance, out-of-bag prediction, regression monotonicity, and several methods for missing data imputation.
Analyze multi-level one-way experimental designs where there are unequal sample sizes and population variance homogeneity can not be assumed. To conduct the Gabriel test <doi:10.2307/2286265>, create two vectors: one for your observations and one for the factor level of each observation. The function, rgabriel, conduct the test and save the output as a vector to input into the gabriel.plot function, which produces a confidence interval plot for Multiple Comparison.
Assessing the comparative performance of two logistic regression models or results of such models or classification models. Discrimination metrics include Integrated Discrimination Improvement (IDI), Net Reclassification Improvement (NRI), and difference in Area Under the Curves (AUCs), Brier scores and Brier skill. Plots include Risk Assessment Plots, Decision curves and Calibration plots. Methods are described in Pickering and Endre (2012) <doi:10.1373/clinchem.2011.167965> and Pencina et al. (2008) <doi:10.1002/sim.2929>.
Implementation of JQuery <https://jquery.com> and CSS styles to allow easy incorporation of various social media elements on a page. The elements include addition of share buttons or connect with us buttons or hyperlink buttons to Shiny applications or dashboards and Rmarkdown documents.Sharing capability on social media platforms including Facebook <https://www.facebook.com>, Linkedin <https://www.linkedin.com>, X/Twitter <https://x.com>, Tumblr <https://www.tumblr.com>, Pinterest <https://www.pinterest.com>, Whatsapp <https://www.whatsapp.com>, Reddit <https://www.reddit.com>, Baidu <https://www.baidu.com>, Blogger <https://www.blogger.com>, Weibo <https://www.weibo.com>, Instagram <https://www.instagram.com>, Telegram <https://www.telegram.me>, Youtube <https://www.youtube.com>.
Implementation of hash tables (hash sets and hash maps) in R, featuring arbitrary R objects as keys, arbitrary hash and key-comparison functions, and customizable behaviour upon queries of missing keys.
This package provides a checkbox group input for usage in a Shiny application. The checkbox group has a head checkbox allowing to check or uncheck all the checkboxes in the group. The checkboxes are customizable.
This package contains tools for reading and writing data from or to files in the formats: akterm, dmna, Scintec Format-1, and Campbell Scientific TOA5.
This package provides tools for working with rotational data, including simulation from the most commonly used distributions on SO(3), methods for different Bayes, mean and median type estimators for the central orientation of a sample, confidence/credible regions for the central orientation based on those estimators and a novel visualization technique for rotation data. Most recently, functions to identify potentially discordant (outlying) values have been added. References: Bingham, Melissa A. and Nordman, Dan J. and Vardeman, Steve B. (2009), Bingham, Melissa A and Vardeman, Stephen B and Nordman, Daniel J (2009), Bingham, Melissa A and Nordman, Daniel J and Vardeman, Stephen B (2010), Leon, C.A. and Masse, J.C. and Rivest, L.P. (2006), Hartley, R and Aftab, K and Trumpf, J. (2011), Stanfill, Bryan and Genschel, Ulrike and Hofmann, Heike (2013), Maonton, Jonathan (2004), Mardia, KV and Jupp, PE (2000, ISBN:9780471953333), Rancourt, D. and Rivest, L.P. and Asselin, J. (2000), Chang, Ted and Rivest, Louis-Paul (2001), Fisher, Nicholas I. (1996, ISBN:0521568900).
Rasterize images using a 3D software renderer. 3D scenes are created either by importing external files, building scenes out of the included objects, or by constructing meshes manually. Supports point and directional lights, anti-aliased lines, shadow mapping, transparent objects, translucent objects, multiple materials types, reflection, refraction, environment maps, multicore rendering, bloom, tone-mapping, and screen-space ambient occlusion.
Implementation of the race/ethnicity prediction method, described in "rethnicity: An R package for predicting ethnicity from names" by Fangzhou Xie (2022) <doi:10.1016/j.softx.2021.100965> and "Rethnicity: Predicting Ethnicity from Names" by Fangzhou Xie (2021) <doi:10.48550/arXiv.2109.09228>.
This provides a robust estimator for stochastic frontier models, employing the Minimum Density Power Divergence Estimator (MDPDE) for enhanced robustness against outliers. Additionally, it includes a function to recommend the optimal tuning parameter, alpha, which controls the robustness of the MDPDE. The methods implemented in this package are based on Song et al. (2017) <doi:10.1016/j.csda.2016.08.005>.
Facilities for running simulations from ordinary differential equation ('ODE') models, such as pharmacometrics and other compartmental models. A compilation manager translates the ODE model into C, compiles it, and dynamically loads the object code into R for improved computational efficiency. An event table object facilitates the specification of complex dosing regimens (optional) and sampling schedules. NB: The use of this package requires both C and Fortran compilers, for details on their use with R please see Section 6.3, Appendix A, and Appendix D in the "R Administration and Installation" manual. Also the code is mostly released under GPL. The VODE and LSODA are in the public domain. The information is available in the inst/COPYRIGHTS.
This package provides useful tools which supplement the use of Simulx software and R connectors ('Monolix Suite'). Simulx is an easy, efficient and flexible application for clinical trial simulations. You need Simulx software to be installed in order to use RsSimulx package. Among others tasks, RsSimulx provides the same functions as package mlxR does with a compatibility with Simulx software.
Package runonce helps automating the saving of long-running code to help running the same code multiple times. If you run some long-running code once, it saves the result in a file on disk. Then, if the result already exists, i.e. if the code has already been run and its output has already been saved, it just reads the result from the stored file instead of running the code again.
Developed to assist researchers with planning analysis, prior to obtaining data from Trusted Research Environments (TREs) also known as safe havens. With functionality to export and import marginal distributions as well as synthesise data, both with and without correlations from these marginal distributions. Using a multivariate cumulative distribution (COPULA). Additionally the International Stroke Trial (IST) is included as an example dataset under ODC-By licence Sandercock et al. (2011) <doi:10.7488/ds/104>, Sandercock et al. (2011) <doi:10.1186/1745-6215-12-101>.
Reads river network shape files and computes network distances. Also included are a variety of computation and graphical tools designed for fisheries telemetry research, such as minimum home range, kernel density estimation, and clustering analysis using empirical k-functions with a bootstrap envelope. Tools are also provided for editing the river networks, meaning there is no reliance on external software.
Calculates risk differences (or prevalence differences for cross-sectional data) using generalized linear models with automatic link function selection. Provides robust model fitting with fallback methods, support for stratification and adjustment variables, inverse probability of treatment weighting (IPTW) for causal inference, and publication-ready output formatting. Handles model convergence issues gracefully and provides confidence intervals using multiple approaches. Methods are based on approaches described in Mark W. Donoghoe and Ian C. Marschner (2018) "logbin: An R Package for Relative Risk Regression Using the Log-Binomial Model" <doi:10.18637/jss.v086.i09> for robust GLM fitting, Peter C. Austin (2011) "An Introduction to Propensity Score Methods for Reducing the Effects of Confounding in Observational Studies" <doi:10.1080/00273171.2011.568786> for IPTW methods, and standard epidemiological methods for risk difference estimation as described in Kenneth J. Rothman, Sander Greenland and Timothy L. Lash (2008, ISBN:9780781755641) "Modern Epidemiology".
An interactive web application for reliability analysis using the shiny <https://shiny.posit.co/> framework. The app provides an easy-to-use interface for performing reliability analysis using WeibullR <https://cran.r-project.org/package=WeibullR> and ReliaGrowR <https://cran.r-project.org/package=ReliaGrowR>.