Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
DEComplexDisease is designed to find the DEGs for complex disease, which is characterized by the heterogeneous genomic expression profiles. Different from the established DEG analysis tools, it does not assume the patients of complex diseases to share the common DEGs. By applying a bi-clustering algorithm, DEComplexDisease finds the DEGs shared by as many patients. Applying the DEComplexDisease analysis results, users are possible to find the patients affected by the same mechanism based on the shared signatures.
This is a package to perform the Adaptive Robust Regression method (ARRm) for the normalization of methylation data from the Illumina Infinium HumanMethylation 450k assay.
This package is a collection of Strand-seq data. The main purpose is to demonstrate functionalities of the breakpointR package.
TrackViewer offers multi-omics analysis with web based tracks and lollipops. Visualize mapped reads along with annotation as track layers for NGS datasets such as ChIP-seq, RNA-seq, miRNA-seq, DNA-seq, SNPs and methylation data.
This package provides a collection of tools for doing various analyses of single-cell RNA-seq gene expression data, with a focus on quality control.
This package provides full genome sequences for Drosophila melanogaster (Fly) as provided by UCSC (dm3, April 2006) and stored in Biostrings objects.
This package provides the data for the gene expression enrichment analysis conducted in the package ABAEnrichment. The package includes three datasets which are derived from the Allen Brain Atlas:
Gene expression data from Human Brain (adults) averaged across donors,
Gene expression data from the Developing Human Brain pooled into five age categories and averaged across donors, and
a developmental effect score based on the Developing Human Brain expression data.
All datasets are restricted to protein coding genes.
Representing nucleotide modifications in a nucleotide sequence is usually done via special characters from a number of sources. This represents a challenge to work with in R and the Biostrings package. The Modstrings package implements this functionality for RNA and DNA sequences containing modified nucleotides by translating the character internally in order to work with the infrastructure of the Biostrings package. For this the ModRNAString and ModDNAString classes and derivates and functions to construct and modify these objects despite the encoding issues are implemenented. In addition the conversion from sequences to list like location information (and the reverse operation) is implemented as well.
The mzR package provides a unified API to the common file formats and parsers available for mass spectrometry data. It comes with a wrapper for the ISB random access parser for mass spectrometry mzXML, mzData and mzML files. The package contains the original code written by the ISB, and a subset of the proteowizard library for mzML and mzIdentML. The netCDF reading code has previously been used in XCMS.
Monocle 3 performs clustering, differential expression and trajectory analysis for single-cell expression experiments. It orders individual cells according to progress through a biological process, without knowing ahead of time which genes define progress through that process. Monocle 3 also performs differential expression analysis, clustering, visualization, and other useful tasks on single-cell expression data. It is designed to work with RNA-Seq data, but could be used with other types as well.
This is a package for saving GenomicRanges, IRanges and related data structures into file artifacts, and loading them back into memory. This is a more portable alternative to serialization of such objects into RDS files. Each artifact is associated with metadata for further interpretation; downstream applications can enrich this metadata with context-specific properties.
This package provides processed 22 samples from BrainSpan keeping only the information for chromosome 21. Data is stored in the BigWig format and is used for examples in other packages.
This package computes differentially bound sites from multiple ChIP-seq experiments using affinity (quantitative) data. Also enables occupancy (overlap) analysis and plotting functions.
This package provides examples and code that make use of the different graph related packages produced by Bioconductor.
This package provides Affymetrix HG_U95A Array annotation data (chip hgu95a) assembled using data from public repositories.
The polyester package simulates RNA-seq reads from differential expression experiments with replicates. The reads can then be aligned and used to perform comparisons of methods for differential expression.
LEA is an R package dedicated to population genomics, landscape genomics and genotype-environment association tests. LEA can run analyses of population structure and genome-wide tests for local adaptation, and also performs imputation of missing genotypes. The package includes statistical methods for estimating ancestry coefficients from large genotypic matrices and for evaluating the number of ancestral populations (snmf). It performs statistical tests using latent factor mixed models for identifying genetic polymorphisms that exhibit association with environmental gradients or phenotypic traits (lfmm2). In addition, LEA computes values of genetic offset statistics based on new or predicted environments (genetic.gap, genetic.offset). LEA is mainly based on optimized programs that can scale with the dimensions of large data sets.
This is a supportive data package for the software package gage. However, the data supplied here are also useful for gene set or pathway analysis or microarray data analysis in general. In this package, we provide two demo microarray dataset: GSE16873 (a breast cancer dataset from GEO) and BMP6 (originally published as an demo dataset for GAGE, also registered as GSE13604 in GEO). This package also includes commonly used gene set data based on KEGG pathways and GO terms for major research species, including human, mouse, rat and budding yeast. Mapping data between common gene IDs for budding yeast are also included.
The project is intended to support the use of sequins(synthetic sequencing spike-in controls) owned and made available by the Garvan Institute of Medical Research. The goal is to provide a standard library for quantitative analysis, modelling, and visualization of spike-in controls.
This package is an implementation of the Adaptively Weighted Fisher's method, including fast p-value computing, variability index, and meta-pattern.
This package contains the functions to find the gene expression modules that represent the drivers of Kauffman's attractor landscape. The modules are the core attractor pathways that discriminate between different cell types of groups of interest. Each pathway has a set of synexpression groups, which show transcriptionally-coordinated changes in gene expression.
This package provides delayed computation of a matrix of scaled and centered values. The result is equivalent to using the scale function but avoids explicit realization of a dense matrix during block processing. This permits greater efficiency in common operations, most notably matrix multiplication.
This package discovers differential features in hetero- and homogeneous omic data by a two-step method including subsampling LIMMA and NSCA. DECO reveals feature associations to hidden subclasses not exclusively related to higher deregulation levels.
This package uses a Bayesian hierarchical model to detect enriched regions from ChIP-chip experiments. The common goal in analyzing this ChIP-chip data is to detect DNA-protein interactions from ChIP-chip experiments. The BAC package has mainly been tested with Affymetrix tiling array data. However, we expect it to work with other platforms (e.g. Agilent, Nimblegen, cDNA, etc.). Note that BAC does not deal with normalization, so you will have to normalize your data beforehand.