Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This queue is a data structure that lets parallel processes send and receive messages, and it can help coordinate the work of complicated parallel tasks. Processes can push new messages to the queue, pop old messages, and obtain a log of all the messages ever pushed. File locking preserves the integrity of the data even when multiple processes access the queue simultaneously.
Use the <https://toggl.com> time tracker api through R.
Email Finder R Client Library. Search emails are based on the website You give one domain name and it returns all the email addresses found on the internet. Email Finder generates or retrieves the most likely email address from a domain name, a first name and a last name. Email verify checks the deliverability of a given email address, verifies if it has been found in our database, and returns their sources.
This package provides a convenient way to log scalars, images, audio, and histograms in the tfevent record file format. Logged data can be visualized on the fly using TensorBoard', a web based tool that focuses on visualizing the training progress of machine learning models.
Automates documentation of test_that() calls within R test files. The package scans test sources, extracts human-readable test titles (even when composed with functions like paste() or glue::glue(), ... etc.), and generates reproducible roxygen2-style listings that can be inserted both globally and per-section. It ensures idempotent updates and supports customizable numbering templates with hierarchical indices. Designed for developers, QA teams, and package maintainers seeking consistent, self-documenting test inventories.
This package provides a framework for statistical analysis in content analysis. In addition to a pipeline for preprocessing text corpora and linking to the latent Dirichlet allocation from the lda package, plots are offered for the descriptive analysis of text corpora and topic models. In addition, an implementation of Chang's intruder words and intruder topics is provided. Sample data for the vignette is included in the toscaData package, which is available on gitHub: <https://github.com/Docma-TU/toscaData>.
Get comments posted on YouTube videos, information on how many times a video has been liked, search for videos with particular content, and much more. You can also scrape captions from a few videos. To learn more about the YouTube API, see <https://developers.google.com/youtube/v3/>.
The model estimates air pollution removal by dry deposition on trees. It also estimates or uses hourly values for aerodynamic resistance, boundary layer resistance, canopy resistance, stomatal resistance, cuticular resistance, mesophyll resistance, soil resistance, friction velocity and deposition velocity. It also allows plotting graphical results for a specific time period. The pollutants are nitrogen dioxide, ozone, sulphur dioxide, carbon monoxide and particulate matter. Baldocchi D (1994) <doi:10.1093/treephys/14.7-8-9.1069>. Farquhar GD, von Caemmerer S, Berry JA (1980) Planta 149: 78-90. Hirabayashi S, Kroll CN, Nowak DJ (2015) i-Tree Eco Dry Deposition Model. Nowak DJ, Crane DE, Stevens JC (2006) <doi:10.1016/j.ufug.2006.01.007>. US EPA (1999) PCRAMMET User's Guide. EPA-454/B-96-001. Weiss A, Norman JM (1985) Agricultural and Forest Meteorology 34: 205รข 213.
Create rich and fully interactive timeline visualizations. Timelines can be included in Shiny apps or R markdown documents. timevis includes an extensive API to manipulate a timeline after creation, and supports getting data out of the visualization into R. Based on the vis.js Timeline JavaScript library.
Accompanies the texts Time Series for Data Science with R by Woodward, Sadler and Robertson & Applied Time Series Analysis with R, 2nd edition by Woodward, Gray, and Elliott. It is helpful for data analysis and for time series instruction.
This package provides a collection of tools for trade practitioners, including the ability to calibrate different consumer demand systems and simulate the effects of tariffs and quotas under different competitive regimes. These tools are derived from Anderson et al. (2001) <doi:10.1016/S0047-2727(00)00085-2> and Froeb et al. (2003) <doi:10.1016/S0304-4076(02)00166-5>.
An R interface to load testing data in the OMOP Common Data Model ('CDM'). An input file, csv or xlsx, can be converted to a CDMConnector object. This object can be used to execute and test studies that use the CDM <https://www.ohdsi.org/data-standardization/>.
This package provides methods for handling the missing values outliers are introduced in this package. The recognized missing values and outliers are replaced using a model-based approach. The model may consist of both autoregressive components and external regressors. The methods work robust and efficient, and they are fully tunable. The primary motivation for writing the package was preprocessing of the energy systems data, e.g. power plant production time series, but the package could be used with any time series data. For details, see Narajewski et al. (2021) <doi:10.1016/j.softx.2021.100809>.
Schedule R scripts/processes with the Windows task scheduler. This allows R users to automate R processes on specific time points from R itself.
This package provides a general framework of two directional simultaneous inference is provided for high-dimensional as well as the fixed dimensional models with manifest variable or latent variable structure, such as high-dimensional mean models, high- dimensional sparse regression models, and high-dimensional latent factors models. It is making the simultaneous inference on a set of parameters from two directions, one is testing whether the estimated zero parameters indeed are zero and the other is testing whether there exists zero in the parameter set of non-zero. More details can be referred to Wei Liu, et al. (2022) <doi:10.48550/arXiv.2012.11100>.
Checks LaTeX documents and .bib files for typing errors, such as spelling errors, incorrect quotation marks. Also provides useful functions for parsing and linting bibliography files.
This package provides a dataset of predefined color palettes based on the Star Trek science fiction series, associated color palette functions, and additional functions for generating customized palettes that are on theme. The package also offers functions for applying the palettes to plots made using the ggplot2 package.
Compute arbitrary non-parametric bootstrap statistics on data in tidy data frames.
The main purpose of this package is to propose a rigorous framework to fairly compare trip distribution laws and models as described in Lenormand et al. (2016) <doi:10.1016/j.jtrangeo.2015.12.008>.
Enhances koRpus text object classes and methods to also support large corpora. Hierarchical ordering of corpus texts into arbitrary categories will be preserved. Provided classes and methods also improve the ability of using the koRpus package together with the tm package. To ask for help, report bugs, suggest feature improvements, or discuss the global development of the package, please subscribe to the koRpus-dev mailing list (<https://korpusml.reaktanz.de>).
An integrated set of extensions to the ergm package to analyze and simulate network evolution based on exponential-family random graph models (ERGM). tergm is a part of the statnet suite of packages for network analysis. See Krivitsky and Handcock (2014) <doi:10.1111/rssb.12014> and Carnegie, Krivitsky, Hunter, and Goodreau (2015) <doi:10.1080/10618600.2014.903087>.
Temporal disaggregation methods are used to disaggregate and interpolate a low frequency time series to a higher frequency series, where either the sum, the mean, the first or the last value of the resulting high frequency series is consistent with the low frequency series. Temporal disaggregation can be performed with or without one or more high frequency indicator series. Contains the methods of Chow-Lin, Santos-Silva-Cardoso, Fernandez, Litterman, Denton and Denton-Cholette, summarized in Sax and Steiner (2013) <doi:10.32614/RJ-2013-028>. Supports most R time series classes.
The tabularmap is one of the visualization methods for efficiently displaying data consisting of multiple elements by tiling them. When dealing with geospatial, it corrects for differences in visibility between areas.
This package performs model-based tensor clustering methods including Tensor Gaussian Mixture Model (TGMM), Tensor Envelope Mixture Model (TEMM) by Deng and Zhang (2021) <DOI: 10.1111/biom.13486>, Doubly-Enhanced EM (DEEM) algorithm by Mai, Zhang, Pan and Deng (2021) <DOI: 10.1080/01621459.2021.1904959>.