Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Test for univariate and bivariate spatial patterns in spatial omics data with single-molecule resolution. The tests implemented allow for analysis of nested designs and are automatically calibrated to different biological specimens. Tests for aggregation, colocalization, gradients and vicinity to cell edge or centroid are provided.
This package implements several functions useful for analysis of gene expression data by sequencing tags as done in SAGE (Serial Analysis of Gene Expressen) data, i.e. extraction of a SAGE library from sequence files, sequence error correction, library comparison. Sequencing error correction is implementing using an Expectation Maximization Algorithm based on a Mixture Model of tag counts.
This package implements methods to calculate information accretion for a given version of the gene ontology and uses this data to calculate remaining uncertainty, misinformation, and semantic similarity for given sets of predicted annotations and true annotations from a protein function predictor.
signifinder is an R package for computing and exploring a compendium of tumor signatures. It allows to compute a variety of signatures coming from public literature, based on gene expression values, and return single-sample (-cell/-spot) scores. Currently, signifinder collects more than 70 distinct signatures, relating to multiple tumors and multiple cancer processes.
This package provides a pipeline for analysis of GC-MS data acquired in selected ion monitoring (SIM) mode. The tool also provides a guidance in choosing appropriate fragments for the targets of interest by using an optimization algorithm. This is done by considering overlapping peaks from a provided library by the user.
This package is intended to transform SWATH data from the OpenSWATH software into a format readable by other statistics packages while performing filtering, annotation and FDR estimation.
The Single Cell Toolkit (SCTK) in the singleCellTK package provides an interface to popular tools for importing, quality control, analysis, and visualization of single cell RNA-seq data. SCTK allows users to seamlessly integrate tools from various packages at different stages of the analysis workflow. A general "a la carte" workflow gives users the ability access to multiple methods for data importing, calculation of general QC metrics, doublet detection, ambient RNA estimation and removal, filtering, normalization, batch correction or integration, dimensionality reduction, 2-D embedding, clustering, marker detection, differential expression, cell type labeling, pathway analysis, and data exporting. Curated workflows can be used to run Seurat and Celda. Streamlined quality control can be performed on the command line using the SCTK-QC pipeline. Users can analyze their data using commands in the R console or by using an interactive Shiny Graphical User Interface (GUI). Specific analyses or entire workflows can be summarized and shared with comprehensive HTML reports generated by Rmarkdown. Additional documentation and vignettes can be found at camplab.net/sctk.
This package defines interfaces from R to scvi-tools. A vignette works through the totalVI tutorial for analyzing CITE-seq data. Another vignette compares outputs of Chapter 12 of the OSCA book with analogous outputs based on totalVI quantifications. Future work will address other components of scvi-tools, with a focus on building understanding of probabilistic methods based on variational autoencoders.
saseR is a highly performant and fast framework for aberrant expression and splicing analyses. The main functions are: \itemize\item \code\linkBamtoAspliCounts - Process BAM files to ASpli counts \item \code\linkconvertASpli - Get gene, bin or junction counts from ASpli SummarizedExperiment \item \code\linkcalculateOffsets - Create an offsets assays for aberrant expression or splicing analysis \item \code\linksaseRfindEncodingDim - Estimate the optimal number of latent factors to include when estimating the mean expression \item \code\linksaseRfit - Parameter estimation of the negative binomial distribution and compute p-values for aberrant expression and splicing For information upon how to use these functions, check out our vignette at \urlhttps://github.com/statOmics/saseR/blob/main/vignettes/Vignette.Rmd and the saseR paper: Segers, A. et al. (2023). Juggling offsets unlocks RNA-seq tools for fast scalable differential usage, aberrant splicing and expression analyses. bioRxiv. \urlhttps://doi.org/10.1101/2023.06.29.547014.
Scalable implementation of generalized mixed models with highly optimized C++ implementation and integration with Genomic Data Structure (GDS) files. It is designed for single variant tests and set-based aggregate tests in large-scale Phenome-wide Association Studies (PheWAS) with millions of variants and samples, controlling for sample structure and case-control imbalance. The implementation is based on the SAIGE R package (v0.45, Zhou et al. 2018 and Zhou et al. 2020), and it is extended to include the state-of-the-art ACAT-O set-based tests. Benchmarks show that SAIGEgds is significantly faster than the SAIGE R package.
This package provides a shiny interface to the scanMiR package. The application enables the scanning of transcripts and custom sequences for miRNA binding sites, the visualization of KdModels and binding results, as well as browsing predicted repression data. In addition contains the IndexedFst class for fast indexed reading of large GenomicRanges or data.frames, and some utilities for facilitating scans and identifying enriched miRNA-target pairs.
To facilitate and streamline phosphoproteomics data analysis, we developed SmartPhos, an R package for the pre-processing, quality control, and exploratory analysis of phosphoproteomics data generated by MaxQuant and Spectronaut. The package can be used either through the R command line or through an interactive ShinyApp called SmartPhos Explorer. The package contains methods such as normalization and normalization correction, transformation, imputation, batch effect correction, PCA, heatmap, differential expression, time-series clustering, gene set enrichment analysis, and kinase activity inference.
Subsampling of high throughput sequencing count data for use in experiment design and analysis.
The objective of this package is to efficiently create scatterplots where groups can be distinguished by color and texture. Visualizations in computational biology tend to have many groups making it difficult to distinguish between groups solely on color. Thus, this package is useful for increasing the accessibility of scatterplot visualizations to those with visual impairments such as color blindness.
Extracted data from 369 TCGA Head and Neck Cancer DNA methylation samples. The extracted data serve as an example dataset for the package shinyMethyl. Original samples are from 450k methylation arrays, and were obtained from The Cancer Genome Atlas (TCGA). 310 samples are from tumor, 50 are matched normals and 9 are technical replicates of a control cell line.
squallms is a Bioconductor R package that implements a "semi-labeled" approach to untargeted mass spectrometry data. It pulls in raw data from mass-spec files to calculate several metrics that are then used to label MS features in bulk as high or low quality. These metrics of peak quality are then passed to a simple logistic model that produces a fully-labeled dataset suitable for downstream analysis.
Data from Wasserman & Faust (1999) "Social Network Analysis".
The skewr package is a tool for visualizing the output of the Illumina Human Methylation 450k BeadChip to aid in quality control. It creates a panel of nine plots. Six of the plots represent the density of either the methylated intensity or the unmethylated intensity given by one of three subsets of the 485,577 total probes. These subsets include Type I-red, Type I-green, and Type II.The remaining three distributions give the density of the Beta-values for these same three subsets. Each of the nine plots optionally displays the distributions of the "rs" SNP probes and the probes associated with imprinted genes as series of tick marks located above the x-axis.
This package was automatically created by package AnnotationForge version 1.11.21. The probe sequence data was obtained from http://www.affymetrix.com. The file name was Soybean\_probe\_tab.
Expression profiling using microarray technology to prove if Hypoxia Promotes Efficient Differentiation of Human Embryonic Stem Cells to Functional Endothelium by Prado-Lopez et al. (2010) Stem Cells 28:407-418. Full data available at Gene Expression Omnibus series GSE37761.
SuperCellCyto provides the ability to summarise cytometry data into supercells by merging together cells that are similar in their marker expressions using the SuperCell package.
survClust is an outcome weighted integrative clustering algorithm used to classify multi-omic samples on their available time to event information. The resulting clusters are cross-validated to avoid over overfitting and output classification of samples that are molecularly distinct and clinically meaningful. It takes in binary (mutation) as well as continuous data (other omic types).
This package can optimize the parameter in S-system models given time series data.
This package provides a package to suggest the number of mutational signatures in a collection of somatic mutations using calculating the cross-validated perplexity score.