Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides tools to compute unbiased pleiotropic heritability estimates of complex diseases from genome-wide association studies (GWAS) summary statistics. We estimate pleiotropic heritability from GWAS summary statistics by estimating the proportion of variance explained from an estimated genetic correlation matrix (Bulik-Sullivan et al. 2015 <doi:10.1038/ng.3406>) and employing a Monte-Carlo bias correction procedure to account for sampling noise in genetic correlation estimates.
This package implements a unified framework of parametric simplex method for a variety of sparse learning problems (e.g., Dantzig selector (for linear regression), sparse quantile regression, sparse support vector machines, and compressive sensing) combined with efficient hyper-parameter selection strategies. The core algorithm is implemented in C++ with Eigen3 support for portable high performance linear algebra. For more details about parametric simplex method, see Haotian Pang (2017) <https://papers.nips.cc/paper/6623-parametric-simplex-method-for-sparse-learning.pdf>.
Implementation of the Phoenix and Phoenix-8 Sepsis Criteria as described in "Development and Validation of the Phoenix Criteria for Pediatric Sepsis and Septic Shock" by Sanchez-Pinto, Bennett, DeWitt, Russell et al. (2024) <doi:10.1001/jama.2024.0196> (Drs. Sanchez-Pinto and Bennett contributed equally to this manuscript; Dr. DeWitt and Mr. Russell contributed equally to the manuscript), "International Consensus Criteria for Pediatric Sepsis and Septic Shock" by Schlapbach, Watson, Sorce, Argent, et al. (2024) <doi:10.1001/jama.2024.0179> (Drs Schlapbach, Watson, Sorce, and Argent contributed equally) and the application note "phoenix: an R package and Python module for calculating the Phoenix pediatric sepsis score and criteria" by DeWitt, Russell, Rebull, Sanchez-Pinto, and Bennett (2024) <doi:10.1093/jamiaopen/ooae066>.
Psychometric mixture models based on flexmix infrastructure. At the moment Rasch mixture models with different parameterizations of the score distribution (saturated vs. mean/variance specification), Bradley-Terry mixture models, and MPT mixture models are implemented. These mixture models can be estimated with or without concomitant variables. See Frick et al. (2012) <doi:10.18637/jss.v048.i07> and Frick et al. (2015) <doi:10.1177/0013164414536183> for details on the Rasch mixture models.
This package contains statistical inference tools applied to Partial Linear Regression (PLR) models. Specifically, point estimation, confidence intervals estimation, bandwidth selection, goodness-of-fit tests and analysis of covariance are considered. Kernel-based methods, combined with ordinary least squares estimation, are used and time series errors are allowed. In addition, these techniques are also implemented for both parametric (linear) and nonparametric regression models.
Evaluate or optimize designs for nonlinear mixed effects models using the Fisher Information matrix. Methods used in the package refer to Mentré F, Mallet A, Baccar D (1997) <doi:10.1093/biomet/84.2.429>, Retout S, Comets E, Samson A, Mentré F (2007) <doi:10.1002/sim.2910>, Bazzoli C, Retout S, Mentré F (2009) <doi:10.1002/sim.3573>, Le Nagard H, Chao L, Tenaillon O (2011) <doi:10.1186/1471-2148-11-326>, Combes FP, Retout S, Frey N, Mentré F (2013) <doi:10.1007/s11095-013-1079-3> and Seurat J, Tang Y, Mentré F, Nguyen TT (2021) <doi:10.1016/j.cmpb.2021.106126>.
Given a set of source zone polygons such as census tracts or city blocks alongside with population counts and a target zone of incogruent yet superimposed polygon features (such as individual buildings) populR transforms population counts from the former to the latter using Areal Interpolation methods.
Conduct dsep tests (piecewise SEM) of a directed, or mixed, acyclic graph without latent variables (but possibly with implicitly marginalized or conditioned latent variables that create dependent errors) based on linear, generalized linear, or additive modelswith or without a nesting structure for the data. Also included are functions to do desp tests step-by-step,exploratory path analysis, and Monte Carlo X2 probabilities. This package accompanies Shipley, B, (2026).Cause and Correlation in Biology: A User's Guide to Path Analysis, StructuralEquations and Causal Inference (3rd edition). Cambridge University Press.
Directly pipes raw quantitative PCR (qPCR) machine outputs into downstream analyses using the comparative Ct (Delta-Delta Ct) method described by Livak and Schmittgen (2001) <doi:10.1006/meth.2001.1262>. Streamlines the workflow from Excel export to publication-ready plots. Integrates unique visual quality control by reconstructing 96-well plate heatmaps, allowing users to instantly detect pipetting errors, edge effects, and outliers. Key features include automated error propagation, laboratory master mix calculations, and generation of bar charts and volcano plots.
Accurate classification of breast cancer tumors based on gene expression data is not a trivial task, and it lacks standard practices.The PAM50 classifier, which uses 50 gene centroid correlation distances to classify tumors, faces challenges with balancing estrogen receptor (ER) status and gene centering. The PCAPAM50 package leverages principal component analysis and iterative PAM50 calls to create a gene expression-based ER-balanced subset for gene centering, avoiding the use of protein expression-based ER data resulting into an enhanced Breast Cancer subtyping.
Compute personal values scores from various questionnaires based on the theoretical constructs proposed by professor Shalom H. Schwartz. Designed for researchers and practitioners in psychology, sociology, and related fields, the package facilitates the quantification and visualization of different dimensions related to personal values from survey data. It incorporates the recommended statistical adjustment to enhance the accuracy and interpretation of the results.
Utilize the Bayesian prior and posterior predictive checking approach to provide a statistical assessment of replication success and failure. The package is based on the methods proposed in Zhao,Y., Wen X.(2021) <arXiv:2105.03993>.
An easy-to-use tool for working with presence/absence tests on pooled or grouped samples. The primary application is for estimating prevalence of a marker in a population based on the results of tests on pooled specimens. This sampling method is often employed in surveillance of rare conditions in humans or animals (e.g. molecular xenomonitoring). The package was initially conceived as an R-based alternative to the molecular xenomonitoring software, PoolScreen <https://sites.uab.edu/statgenetics/software/>. However, it goes further, allowing for estimates of prevalence to be adjusted for hierarchical sampling frames, and perform flexible mixed-effect regression analyses (McLure et al. Environmental Modelling and Software. <DOI:10.1016/j.envsoft.2021.105158>). The package is currently in early stages, however more features are planned or in the works: e.g. adjustments for imperfect test specificity/sensitivity, functions for helping with optimal experimental design, and functions for spatial modelling.
This package implements an extension of the Chacko chi-square test for ordered vectors (Chacko, 1966, <https://www.jstor.org/stable/25051572>). Our extension brings the Chacko test to the computer age by implementing a permutation test to offer a numeric estimate of the p-value, which is particularly useful when the analytic solution is not available.
This package provides data set and function for exploration of Multiple Indicator Cluster Survey 2014 Household Listing questionnaire data for Punjab, Pakistan.
Global hypothesis tests combine information across multiple endpoints to test a single hypothesis. The prediction test is a recently proposed global hypothesis test with good performance for small sample sizes and many endpoints of interest. The test is also flexible in the types and combinations of expected results across the individual endpoints. This package provides functions for data processing and calculation of the prediction test.
Bayesian variable selection for linear regression models using hierarchical priors. There is a prior that combines information across responses and one that combines information across covariates, as well as a standard spike and slab prior for comparison. An MCMC samples from the marginal posterior distribution for the 0-1 variables indicating if each covariate belongs to the model for each response.
This package produces power spectral density estimates through iterative refinement of the optimal number of sine-tapers at each frequency. This optimization procedure is based on the method of Riedel and Sidorenko (1995), which minimizes the Mean Square Error (sum of variance and bias) at each frequency, but modified for computational stability. The same procedure can now be used to calculate the cross spectrum (multivariate analyses).
This package contains functions to fit proportional hazards (PH) model to partly interval-censored (PIC) data (Pan et al. (2020) <doi:10.1177/0962280220921552>), PH model with spatial frailty to spatially dependent PIC data (Pan and Cai (2021) <doi:10.1080/03610918.2020.1839497>), and mixed effects PH model to clustered PIC data. Each random intercept/random effect can follow both a normal prior and a Dirichlet process mixture prior. It also includes the corresponding functions for general interval-censored data.
Allows for data to be transformed before using it to construct models. Builds structures to allow functions in the PMML package to output transformation details in addition to the model in the resulting PMML file. The Predictive Model Markup Language (PMML) is an XML-based language which provides a way for applications to define machine learning, statistical and data mining models and to share models between PMML compliant applications. More information about the PMML industry standard and the Data Mining Group can be found at <http://www.dmg.org>. The generated PMML can be imported into any PMML consuming application, such as Zementis Predictive Analytics products, which integrate with web services, relational database systems and deploy natively on Hadoop in conjunction with Hive, Spark or Storm, as well as allow predictive analytics to be executed for IBM z Systems mainframe applications and real-time, streaming analytics platforms.
This package provides functions for evaluating the mass density, cumulative distribution function, quantile function and random variate generation for the Polya-Aeppli distribution, also known as the geometric compound Poisson distribution. More information on the implementation can be found at Conrad J. Burden (2014) <arXiv:1406.2780>.
Data sets and functions used in the polish book "Przewodnik po pakiecie R" (The Hitchhiker's Guide to the R). See more at <http://biecek.pl/R>. Among others you will find here data about housing prices, cancer patients, running times and many others.
This package provides a secure and user-friendly interface to interact with the Plug <https://plugbytpf.com.br> API'. It enables developers to store and manage tokens securely using the keyring package, retrieve data from API endpoints with the httr2 package, and handle large datasets with chunked data fetching. Designed for simplicity and security, the package facilitates seamless integration with Plug ecosystem.
This package implements a Bayesian profile regression using a generalized linear mixed model as output model. The package allows for binary (probit mixed model) and continuous (linear mixed model) outcomes and both continuous and categorical clustering variables. The package utilizes RcppArmadillo and RcppDist for high-performance statistical computing in C++. For more details see Amestoy & al. (2025) <doi:10.48550/arXiv.2510.08304>.