Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Computation of asymptotic confidence intervals for negative and positive predictive values in binary diagnostic tests in case-control studies. Experimental design for hypothesis tests on predictive values.
This package provides tools for statistical analysis using the binscatter methods developed by Cattaneo, Crump, Farrell and Feng (2024a) <doi:10.48550/arXiv.1902.09608>, Cattaneo, Crump, Farrell and Feng (2024b) <https://nppackages.github.io/references/Cattaneo-Crump-Farrell-Feng_2024_NonlinearBinscatter.pdf> and Cattaneo, Crump, Farrell and Feng (2024c) <doi:10.48550/arXiv.1902.09615>. Binscatter provides a flexible way of describing the relationship between two variables based on partitioning/binning of the independent variable of interest. binsreg(), binsqreg() and binsglm() implement binscatter least squares regression, quantile regression and generalized linear regression respectively, with particular focus on constructing binned scatter plots. They also implement robust (pointwise and uniform) inference of regression functions and derivatives thereof. binstest() implements hypothesis testing procedures for parametric functional forms of and nonparametric shape restrictions on the regression function. binspwc() implements hypothesis testing procedures for pairwise group comparison of binscatter estimators. binsregselect() implements data-driven procedures for selecting the number of bins for binscatter estimation. All the commands allow for covariate adjustment, smoothness restrictions and clustering.
This package provides tools to calibrate, validate, and make predictions with the General Unified Threshold model of Survival adapted for Bee species. The model is presented in the publication from Baas, J., Goussen, B., Miles, M., Preuss, T.G., Roessing, I. (2022) <doi:10.1002/etc.5423> and Baas, J., Goussen, B., Taenzler, V., Roeben, V., Miles, M., Preuss, T.G., van den Berg, S., Roessink, I. (2024) <doi:10.1002/etc.5871>, and is based on the GUTS framework Jager, T., Albert, C., Preuss, T.G. and Ashauer, R. (2011) <doi:10.1021/es103092a>. The authors are grateful to Bayer A.G. for its financial support.
Fit two-regime threshold autoregressive (TAR) models by Markov chain Monte Carlo methods.
Arrays of structured data types can require large volumes of disk space to store. Blosc is a library that provides a fast and efficient way to compress such data. It is often applied in storage of n-dimensional arrays, such as in the case of the geo-spatial zarr file format. This package can be used to compress and decompress data using Blosc'.
This package provides a framework to infer causality on binary data using techniques in frequent pattern mining and estimation statistics. Given a set of individual vectors S=x where x(i) is a realization value of binary variable i, the framework infers empirical causal relations of binary variables i,j from S in a form of causal graph G=(V,E) where V is a set of nodes representing binary variables and there is an edge from i to j in E if the variable i causes j. The framework determines dependency among variables as well as analyzing confounding factors before deciding whether i causes j. The publication of this package is at Chainarong Amornbunchornvej, Navaporn Surasvadi, Anon Plangprasopchok, and Suttipong Thajchayapong (2023) <doi:10.1016/j.heliyon.2023.e15947>.
Propagate uncertainty from several estimates when combining these estimates via a function. This is done by using the parametric bootstrap to simulate values from the distribution of each estimate to build up an empirical distribution of the combined parameter. Finally either the percentile method is used or the highest density interval is chosen to derive a confidence interval for the combined parameter with the desired coverage. Gaussian copulas are used for when parameters are assumed to be dependent / correlated. References: Davison and Hinkley (1997,ISBN:0-521-57471-4) for the parametric bootstrap and percentile method, Gelman et al. (2014,ISBN:978-1-4398-4095-5) for the highest density interval, Stockdale et al. (2020)<doi:10.1016/j.jhep.2020.04.008> for an example of combining conditional prevalences.
For a series of binary responses, create stopping boundary with exact results after stopping, allowing updating for missing assessments.
This package implements methods for Bayesian analysis of State Space Models. Includes implementations of the Particle Marginal Metropolis-Hastings algorithm described in Andrieu et al. (2010) <doi:10.1111/j.1467-9868.2009.00736.x> and automatic tuning inspired by Pitt et al. (2012) <doi:10.1016/j.jeconom.2012.06.004> and J. Dahlin and T. B. Schön (2019) <doi:10.18637/jss.v088.c02>.
Nonparametric detection of nonuniformity and dependence with Binary Expansion Testing (BET). See Kai Zhang (2019) BET on Independence, Journal of the American Statistical Association, 114:528, 1620-1637, <DOI:10.1080/01621459.2018.1537921>, Kai Zhang, Wan Zhang, Zhigen Zhao, Wen Zhou. (2023). BEAUTY Powered BEAST, <doi:10.48550/arXiv.2103.00674> and Wan Zhang, Zhigen Zhao, Michael Baiocchi, Yao Li, Kai Zhang. (2023) SorBET: A Fast and Powerful Algorithm to Test Dependence of Variables, Techinical report.
This package implements methods for building and analyzing models based on panel data as described in the paper by Moral-Benito (2013, <doi:10.1080/07350015.2013.818003>). The package provides functions to estimate dynamic panel data models and analyze the results of the estimation.
Implementation of the BC3NET algorithm for gene regulatory network inference (de Matos Simoes and Frank Emmert-Streib, Bagging Statistical Network Inference from Large-Scale Gene Expression Data, PLoS ONE 7(3): e33624, <doi:10.1371/journal.pone.0033624>).
This package performs estimation of marginal treatment effects for binary outcomes when using logistic regression working models with covariate adjustment (see discussions in Magirr et al (2024) <https://osf.io/9mp58/>). Implements the variance estimators of Ge et al (2011) <doi:10.1177/009286151104500409> and Ye et al (2023) <doi:10.1080/24754269.2023.2205802>.
Hypothesis tests and sure independence screening (SIS) procedure based on ball statistics, including ball divergence <doi:10.1214/17-AOS1579>, ball covariance <doi:10.1080/01621459.2018.1543600>, and ball correlation <doi:10.1080/01621459.2018.1462709>, are developed to analyze complex data in metric spaces, e.g, shape, directional, compositional and symmetric positive definite matrix data. The ball divergence and ball covariance based distribution-free tests are implemented to detecting distribution difference and association in metric spaces <doi:10.18637/jss.v097.i06>. Furthermore, several generic non-parametric feature selection procedures based on ball correlation, BCor-SIS and all of its variants, are implemented to tackle the challenge in the context of ultra high dimensional data. A fast implementation for large-scale multiple K-sample testing with ball divergence <doi: 10.1002/gepi.22423> is supported, which is particularly helpful for genome-wide association study.
Bayesian power/type I error calculation and model fitting using the power prior and the normalized power prior for generalized linear models. Detailed examples of applying the package are available at <doi:10.32614/RJ-2023-016>. Models for time-to-event outcomes are implemented in the R package BayesPPDSurv'. The Bayesian clinical trial design methodology is described in Chen et al. (2011) <doi:10.1111/j.1541-0420.2011.01561.x>, and Psioda and Ibrahim (2019) <doi:10.1093/biostatistics/kxy009>. The normalized power prior is described in Duan et al. (2006) <doi:10.1002/env.752> and Ibrahim et al. (2015) <doi:10.1002/sim.6728>.
This package provides a set of Boolean operators which accept integers of any size, in any base from 2 to 36, including 2's complement format, and perform actions like "AND," "OR", "NOT", "SHIFTR/L" etc. The output can be in any base specified. A direct base to base converter is included.
Download typicality rating datasets, generate new stereotype-based typicality ratings using large language models via the Inference Providers API (<https://huggingface.co/docs/inference-providers>), and evaluate them against human-annotated validation data. Also includes functions to extract stereotype strength and base-rate items from typicality matrices. For more details see Beucler et al. (2025) <doi:10.31234/osf.io/eqrfu_v1>.
Combines the magick and imager packages to streamline image analysis, focusing on feature extraction and quantification from biological images, especially microparticles. By providing high throughput pipelines and clustering capabilities, biopixR facilitates efficient insight generation for researchers (Schneider J. et al. (2019) <doi:10.21037/jlpm.2019.04.05>).
Computation and visualization of Bayesian Regions of Evidence to systematically evaluate the sensitivity of a superiority or non-inferiority claim against any prior assumption of its assessors. Methodological details are elaborated by Hoefler and Miller (<https://osf.io/jxnsv>). Besides generic functions, the package also provides an intuitive Shiny application, that can be run in local R environments.
This package provides functions to aid in the design and analysis of agronomic and agricultural experiments through easy access to documentation and helper functions, especially for users who are learning these concepts. While not required for most functionality, this package enhances the `asreml` package which provides a computationally efficient algorithm for fitting mixed models using Residual Maximum Likelihood. It is a commercial package that can be purchased as asreml-R from VSNi <https://vsni.co.uk/>, who will supply a zip file for local installation/updating (see <https://asreml.kb.vsni.co.uk/>).
Various layers of B.C., including administrative boundaries, natural resource management boundaries, census boundaries etc. All layers are available in BC Albers (<https://spatialreference.org/ref/epsg/3005/>) equal-area projection, which is the B.C. government standard. The layers are sourced from the British Columbia and Canadian government under open licenses, including B.C. Data Catalogue (<https://data.gov.bc.ca>), the Government of Canada Open Data Portal (<https://open.canada.ca/en/using-open-data>), and Statistics Canada (<https://www.statcan.gc.ca/en/reference/licence>).
This package contains Bayesian implementations of the Mixed-Effects Accelerated Failure Time (MEAFT) models for censored data. Those can be not only right-censored but also interval-censored, doubly-interval-censored or misclassified interval-censored. The methods implemented in the package have been published in Komárek and Lesaffre (2006, Stat. Modelling) <doi:10.1191/1471082X06st107oa>, Komárek, Lesaffre and Legrand (2007, Stat. in Medicine) <doi:10.1002/sim.3083>, Komárek and Lesaffre (2007, Stat. Sinica) <https://www3.stat.sinica.edu.tw/statistica/oldpdf/A17n27.pdf>, Komárek and Lesaffre (2008, JASA) <doi:10.1198/016214507000000563>, Garcà a-Zattera, Jara and Komárek (2016, Biometrics) <doi:10.1111/biom.12424>.
This package provides functions provide risk projections of invasive breast cancer based on Gail model according to National Cancer Institute's Breast Cancer Risk Assessment Tool algorithm for specified race/ethnic groups and age intervals. Gail MH, Brinton LA, et al (1989) <doi:10.1093/jnci/81.24.1879>. Marthew PB, Gail MH, et al (2016) <doi:10.1093/jnci/djw215>.
This package provides a practical tool for estimating the burden of common communicable diseases in settlements of displaced populations. An online version of the tool can be found at <http://who-refugee-bod.ecdf.ed.ac.uk/shiny/app/>. Estimates of burden of disease aim to synthesize data about cause-specific morbidity and mortality through a systematic approach that enables evidence-based decisions and comparisons across settings. The focus of this tool is on four acute communicable diseases and syndromes, including Acute respiratory infections, Acute diarrheal diseases, Acute jaundice syndrome and Acute febrile illnesses.