Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Estimate quadratic vector autoregression models with the strong hierarchy using the Regularization Algorithm under Marginality Principle (RAMP) by Hao et al. (2018) <doi:10.1080/01621459.2016.1264956>, compare the performance with linear models, and construct networks with partial derivatives.
This package provides functions to infer co-mapping trait hotspots and causal models. Chaibub Neto E, Keller MP, Broman AF, Attie AD, Jansen RC, Broman KW, Yandell BS (2012) Quantile-based permutation thresholds for QTL hotspots. Genetics 191 : 1355-1365. <doi:10.1534/genetics.112.139451>. Chaibub Neto E, Broman AT, Keller MP, Attie AD, Zhang B, Zhu J, Yandell BS (2013) Modeling causality for pairs of phenotypes in system genetics. Genetics 193 : 1003-1013. <doi:10.1534/genetics.112.147124>.
This package provides functions for assigning treatments in randomized experiments using near-optimal threshold blocking. The package is made with large data sets in mind and derives blocks more than an order of magnitude quicker than other methods.
This package provides a high-level plotting system, compatible with `ggplot2` objects, maps from `sf`, `terra`, `raster`, `sp`. It is built primarily on the grid package. The objective of the package is to provide a plotting system that is built for speed and modularity. This is useful for quick visualizations when testing code and for plotting multiple figures to the same device from independent sources that may be independent of one another (i.e., different function or modules the create the visualizations).
Functionality for generating (randomized) quasi-random numbers in high dimensions.
Scaling models and classifiers for sparse matrix objects representing textual data in the form of a document-feature matrix. Includes original implementations of Laver', Benoit', and Garry's (2003) <doi:10.1017/S0003055403000698>, Wordscores model, the Perry and Benoit (2017) <doi:10.48550/arXiv.1710.08963> class affinity scaling model, and the Slapin and Proksch (2008) <doi:10.1111/j.1540-5907.2008.00338.x> wordfish model, as well as methods for correspondence analysis, latent semantic analysis, and fast Naive Bayes and linear SVMs specially designed for sparse textual data.
Basic functions for building parsers, with an application to PC-AXIS format files.
This package provides functions for making run charts, Shewhart control charts and Pareto charts for continuous quality improvement. Included control charts are: I, MR, Xbar, S, T, C, U, U', P, P', and G charts. Non-random variation in the form of minor to moderate persistent shifts in data over time is identified by the Anhoej rules for unusually long runs and unusually few crossing [Anhoej, Olesen (2014) <doi:10.1371/journal.pone.0113825>]. Non-random variation in the form of larger, possibly transient, shifts is identified by Shewhart's 3-sigma rule [Mohammed, Worthington, Woodall (2008) <doi:10.1136/qshc.2004.012047>].
This package provides an infrastructure for efficient processing of large-scale genetic and phenotypic data including core functions for: 1) fitting linear mixed models, 2) constructing marker-based genomic relationship matrices, 3) estimating genetic parameters (heritability and correlation), 4) performing genomic prediction and genetic risk profiling, and 5) single or multi-marker association analyses. Rohde et al. (2019) <doi:10.1101/503631>.
This package provides tools for (automated and manual) quality control of the results of Genome Wide Association Studies.
This package provides a no-frills open-source solution for designing plot labels affixed with QR codes. It features EasyQrlabelr', a BrAPI-compliant shiny app that simplifies the process of plot label design for non-R users. It builds on the methods described by Wu et al. (2020) <doi:10.1111/2041-210X.13405>.
Computes normalized cycle threshold (Ct) values (delta Ct) from raw quantitative polymerase chain reaction (qPCR) Ct values and conducts test of significance using t.test(). Plots expression values based from log2(2^(-1*delta delta Ct)) across groups per gene of interest. Methods for calculation of delta delta Ct and relative expression (2^(-1*delta delta Ct)) values are described in: Livak & Schmittgen, (2001) <doi:10.1006/meth.2001.1262>.
An implementation of Quantitative Fatty Acid Signature Analysis (QFASA) in R. QFASA is a method of estimating the diet composition of predators. The fundamental unit of information in QFASA is a fatty acid signature (signature), which is a vector of proportions describing the composition of fatty acids within lipids. Signature data from at least one predator and from samples of all potential prey types are required. Calibration coefficients, which adjust for the differential metabolism of individual fatty acids by predators, are also required. Given those data inputs, a predator signature is modeled as a mixture of prey signatures and its diet estimate is obtained as the mixture that minimizes a measure of distance between the observed and modeled signatures. A variety of estimation options and simulation capabilities are implemented. Please refer to the vignette for additional details and references.
This package provides a set of functions of increasing complexity allows users to (1) convert QuadKey-identified datasets, based on Microsoft's Bing Maps Tile System', into Simple Features data frames, (2) transform Simple Features data frames into rasters, and (3) process multiple Meta ('Facebook') QuadKey-identified human mobility files directly into raster files. For more details, see Dâ Andrea et al. (2024) <doi:10.21105/joss.06500>.
This package provides functions and data sets for reproducing selected results from the book "Quantitative Risk Management: Concepts, Techniques and Tools". Furthermore, new developments and auxiliary functions for Quantitative Risk Management practice.
This package provides tools for (automated and manual) quality control of the results of Epigenome-Wide Association Studies.
Analysis of Q methodology, used to identify distinct perspectives existing within a group. This methodology is used across social, health and environmental sciences to understand diversity of attitudes, discourses, or decision-making styles (for more information, see <https://qmethod.org/>). A single function runs the full analysis. Each step can be run separately using the corresponding functions: for automatic flagging of Q-sorts (manual flagging is optional), for statement scores, for distinguishing and consensus statements, and for general characteristics of the factors. The package allows to choose either principal components or centroid factor extraction, manual or automatic flagging, a number of mathematical methods for rotation (or none), and a number of correlation coefficients for the initial correlation matrix, among many other options. Additional functions are available to import and export data (from raw *.CSV, HTMLQ and FlashQ *.CSV, PQMethod *.DAT and easy-htmlq *.JSON files), to print and plot, to import raw data from individual *.CSV files, and to make printable cards. The package also offers functions to print Q cards and to generate Q distributions for study administration. See further details in the package documentation, and in the web pages below, which include a cookbook, guidelines for more advanced analysis (how to perform manual flagging or change the sign of factors), data management, and a graphical user interface (GUI) for online and offline use.
Design of QTL (quantitative trait locus) experiments involves choosing which strains to cross, the type of cross, genotyping strategies, phenotyping strategies, and the number of progeny to raise and phenotype. This package provides tools to help make such choices. Sen and others (2007) <doi:10.1007/s00335-006-0090-y>.
This function produces both the numerical and graphical summaries of the QTL hotspot detection in the genomes that are available on the worldwide web including the flanking markers of QTLs.
This package provides methods to determine, smooth and plot quantile periodograms for univariate and multivariate time series. See Kley (2016) <doi:10.18637/jss.v070.i03> for a description and tutorial.
Resources, tutorials, and code snippets dedicated to exploring the intersection of quantum computing and artificial intelligence (AI) in the context of analyzing Cluster of Differentiation 4 (CD4) lymphocytes and optimizing antiretroviral therapy (ART) for human immunodeficiency virus (HIV). With the emergence of quantum artificial intelligence and the development of small-scale quantum computers, there's an unprecedented opportunity to revolutionize the understanding of HIV dynamics and treatment strategies. This project leverages the R package qsimulatR (Ostmeyer and Urbach, 2023, <https://CRAN.R-project.org/package=qsimulatR>), a quantum computer simulator, to explore these applications in quantum computing techniques, addressing the challenges in studying CD4 lymphocytes and enhancing ART efficacy.
This package implements the Quantile Composite-based Path Modeling approach (Davino and Vinzi, 2016 <doi:10.1007/s11634-015-0231-9>; Dolce et al., 2021 <doi:10.1007/s11634-021-00469-0>). The method complements the traditional PLS Path Modeling approach, analyzing the entire distribution of outcome variables and, therefore, overcoming the classical exploration of only average effects. It exploits quantile regression to investigate changes in the relationships among constructs and between constructs and observed variables.
Fits classical sparse regression models with efficient active set algorithms by solving quadratic problems as described by Grandvalet, Chiquet and Ambroise (2017) <doi:10.48550/arXiv.1210.2077>. Also provides a few methods for model selection purpose (cross-validation, stability selection).
Nonlinear machine learning tool for classification, clustering and dimensionality reduction. It integrates 12 q-kernel functions and 15 conditional negative definite kernel functions and includes the q-kernel and conditional negative definite kernel version of density-based spatial clustering of applications with noise, spectral clustering, generalized discriminant analysis, principal component analysis, multidimensional scaling, locally linear embedding, sammon's mapping and t-Distributed stochastic neighbor embedding.