Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Local adaptation and evaluation of maps of continuous attributes in raster format by use of point location data.
Balancing quasi-experimental field research for effects of covariates is fundamental for drawing causal inference. Propensity Score Matching deals with this issue but current techniques are restricted to binary treatment variables. Moreover, they provide several solutions without providing a comprehensive framework on choosing the best model. The MAGMA R-package addresses these restrictions by offering nearest neighbor matching for two to four groups. It also includes the option to match data of a 2x2 design. In addition, MAGMA includes a framework for evaluating the post-matching balance. The package includes functions for the matching process and matching reporting. We provide a tutorial on MAGMA as vignette. More information on MAGMA can be found in Feuchter, M. D., Urban, J., Scherrer V., Breit, M. L., and Preckel F. (2022) <https://osf.io/p47nc/>.
Interfaces the Python library zuko implementing Masked Autoregressive Flows. See Rozet, Divo and Schnake (2023) <doi:10.5281/zenodo.7625672> and Papamakarios, Pavlakou and Murray (2017) <doi:10.48550/arXiv.1705.07057>.
Unbiased estimators of overall and per-class thematic map accuracy and area published in Olofsson et al. (2014) <doi:10.1016/j.rse.2014.02.015> and Stehman (2014) <doi:10.1080/01431161.2014.930207>.
Exploratory data analysis and manipulation functions for multi- label data sets along with an interactive Shiny application to ease their use.
This package provides functions to read in and manipulate air quality model output from Models3-formatted files. This format is used by the Community Multiscale Air Quality (CMAQ) model.
Estimation of the survivor function for interval censored time-to-event data subject to misclassification using nonparametric maximum likelihood estimation, implementing the methods of Titman (2017) <doi:10.1007/s11222-016-9705-7>. Misclassification probabilities can either be specified as fixed or estimated. Models with time dependent misclassification may also be fitted.
Mica is a server application used to create data web portals for large-scale epidemiological studies or multiple-study consortia. Mica helps studies to provide scientifically robust data visibility and web presence without significant information technology effort. Mica provides a structured description of consortia, studies, annotated and searchable data dictionaries, and data access request management. This Mica client allows to perform data extraction for reporting purposes.
Test the marginal correlation between a scalar response variable with a vector of explanatory variables using the max-type test with bootstrap. The test is based on the max-type statistic and its asymptotic distribution under the null hypothesis of no marginal correlation. The bootstrap procedure is used to approximate the null distribution of the test statistic. The package provides a function for performing the test. For more technical details, refer to Zhang and Laber (2014) <doi:10.1080/01621459.2015.1106403>.
Allows the estimation and downstream statistical analysis of the mitochondrial DNA Heteroplasmy calculated from single-cell datasets <https://github.com/ScialdoneLab/MitoHEAR/tree/master>.
GEE solver for correlated nominal or ordinal multinomial responses using a local odds ratios parameterization.
This package provides functions to calculate Unique Trait Combinations (UTC) and scaled Unique Trait Combinations (sUTC) as measures of multivariate richness. The package can also calculate beta-diversity for trait richness and can partition this into nestedness-related and turnover components. The code will also calculate several measures of overlap. See Keyel and Wiegand (2016) <doi:10.1111/2041-210X.12558> for more details.
This package implements a novel density-based approach for estimating unknown means, visualizing distributions, and meta-analyses of quantiles. A detailed vignettes with example datasets and code to prepare data and analyses is available at <https://bookdown.org/a2delivera/metaquant/>. The methods are described in the pre-print by De Livera, Prendergast and Kumaranathunga (2024, <doi:10.48550/arXiv.2411.10971>).
This package provides a fast, robust and easy-to-use calculation of multi-class classification evaluation metrics based on confusion matrix.
Comprehensive toolkit for Environmental Phillips Curve analysis featuring multidimensional instrumental variable creation, transfer entropy causal discovery, network analysis, and state-of-the-art econometric methods. Implements geographic, technological, migration, geopolitical, financial, and natural risk instruments with robust diagnostics and visualization. Provides 24 different instrumental variable approaches with empirical validation. Methods based on Phillips (1958) <doi:10.1111/j.1468-0335.1958.tb00003.x>, transfer entropy by Schreiber (2000) <doi:10.1103/PhysRevLett.85.461>, and weak instrument tests by Stock and Yogo (2005) <doi:10.1017/CBO9780511614491.006>.
66 data sets that were imported using read.table() where appropriate but more commonly after converting to a csv file for importing via read.csv().
Lattice functions for drawing folded empirical cumulative distribution plots, or mountain plots. A mountain plot is similar to an empirical CDF plot, except that the curve increases from 0 to 0.5, then decreases from 0.5 to 1 using an inverted scale at the right side. See Monti (1995) <doi:10.1080/00031305.1995.10476179>.
Straightforward and detailed evaluation of machine learning models. MLeval can produce receiver operating characteristic (ROC) curves, precision-recall (PR) curves, calibration curves, and PR gain curves. MLeval accepts a data frame of class probabilities and ground truth labels, or, it can automatically interpret the Caret train function results from repeated cross validation, then select the best model and analyse the results. MLeval produces a range of evaluation metrics with confidence intervals.
We provide detailed functions for univariate Mixed Tempered Stable distribution.
This package provides a glycolipid mass spectrometry technology has the potential to accurately identify individual bacterial species from polymicrobial samples. To develop bacterial identification algorithms (e.g. machine learning) using this glycolipid technology, it is necessary to generate a large number of various in-silico polymicrobial mass spectra that are similar to real mass spectra. MGMS2 (Membrane Glycolipid Mass Spectrum Simulator) generates such in-silico mass spectra, considering errors in m/z (mass-to-charge ratio) and variances of intensity values, occasions of missing signature ions, and noise peaks. It estimates summary statistics of monomicrobial mass spectra for each strain or species and simulates polymicrobial glycolipid mass spectra using the summary statistics of monomicrobial mass spectra. References: Ryu, S.Y., Wendt, G.A., Chandler, C.E., Ernst, R.K. and Goodlett, D.R. (2019) <doi:10.1021/acs.analchem.9b03340> "Model-based Spectral Library Approach for Bacterial Identification via Membrane Glycolipids." Gibb, S. and Strimmer, K. (2012) <doi:10.1093/bioinformatics/bts447> "MALDIquant: a versatile R package for the analysis of mass spectrometry data.".
The goal of meltr is to provide a fast and friendly way to read non-rectangular data, such as ragged forms of csv (comma-separated values), tsv (tab-separated values), and fwf (fixed-width format) files.
Fit multi-level models with possibly correlated random effects using Markov Chain Monte Carlo simulation. Such models allow smoothing over space and time and are useful in, for example, small area estimation.
Framework for building modular Monte Carlo risk analysis models. It extends the capabilities of mc2d to facilitate working with multiple risk pathways, variates and scenarios. It provides tools to organize risk analysis in independent flexible modules, perform multivariate Monte Carlo node operations, automate the creation of Monte Carlo nodes and visualize risk analysis models. For more details see Ciria (2025) <https://nataliaciria.github.io/mcmodule/articles/mcmodule>.
User-friendly Shiny apps for designing and evaluating phase I cancer clinical trials, with the aim to estimate the maximum tolerated dose (MTD) of a novel drug, using a Bayesian decision procedure based on logistic regression.