Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Extraction of subsequences into FASTA files from GenBank annotations where gene names may vary among accessions. Borstein & O'Meara (2018) <doi:10.7717/peerj.5179>.
This package provides the data sets used to build the ArchaeoPhases vignettes. The data sets were formerly distributed with ArchaeoPhases', however they exceed current CRAN policy for package size.
This package performs simple and canonical CA (covariates on rows/columns) on a two-way frequency table (with missings) by means of SVD. Different scaling methods (standard, centroid, Benzecri, Goodman) as well as various plots including confidence ellipsoids are provided.
This package provides functions for analysis of data generated from experiments in augmented randomised complete block design according to Federer, W.T. (1961) <doi:10.2307/2527837>. Computes analysis of variance, adjusted means, descriptive statistics, genetic variability statistics etc. Further includes data visualization and report generation functions.
The irregularly-spaced data are interpolated onto regular latitude-longitude grids by weighting each station according to its distance and angle from the center of a search radius. In addition to this, we also provide a simple way (Jones and Hulme, 1996) to grid the irregularly-spaced data points onto regular latitude-longitude grids by averaging all stations in grid-boxes.
This package provides assessment tools for regression models with discrete and semicontinuous outcomes proposed in Yang (2023) <doi:10.48550/arXiv.2308.15596>. It calculates the double probability integral transform (DPIT) residuals, constructs QQ plots of residuals and the ordered curve for assessing mean structures.
Using of the accelerated line search algorithm for simultaneously diagonalize a set of symmetric positive definite matrices.
Implementation of the augmented Simulation-Extrapolation (SIMEX) algorithm proposed by Yi et al. (2015) <doi:10.1080/01621459.2014.922777> for analyzing the data with mixed measurement error and misclassification. The main function provides a similar summary output as that of glm() function. Both parametric and empirical SIMEX are considered in the package.
Utility functions to download and process data produced by the ALARM Project, including 2020 redistricting files Kenny and McCartan (2021) <https://alarm-redist.org/posts/2021-08-10-census-2020/> and the 50-State Redistricting Simulations of McCartan, Kenny, Simko, Garcia, Wang, Wu, Kuriwaki, and Imai (2022) <doi:10.7910/DVN/SLCD3E>. The package extends the data introduced in McCartan, Kenny, Simko, Garcia, Wang, Wu, Kuriwaki, and Imai (2022) <doi:10.1038/s41597-022-01808-2> to also include states with only a single district. The package also includes the Japanese 2022 redistricting files from the 47-Prefecture Redistricting Simulations of Miyazaki, Yamada, Yatsuhashi, and Imai (2022) <doi:10.7910/DVN/Z9UKSH>.
An interactive document on the topic of one-way and two-way analysis of variance using rmarkdown and shiny packages. Runtime examples are provided in the package function as well as at <https://tinyurl.com/ANOVAStatsTool>.
Collect your data on digital marketing campaigns from Appsflyer using the Windsor.ai API <https://windsor.ai/api-fields/>.
Different tools for managing databases of airborne particles, elaborating the main calculations and visualization of results. In a first step, data are checked using tools for quality control and all missing gaps are completed. Then, the main parameters of the pollen season are calculated and represented graphically. Multiple graphical tools are available: pollen calendars, phenological plots, time series, tendencies, interactive plots, abundance plots...
This package provides a collection of tools that support data splitting, predictive modeling, and model evaluation. A typical function is to split a dataset into a training dataset and a test dataset. Then compare the data distribution of the two datasets. Another feature is to support the development of predictive models and to compare the performance of several predictive models, helping to select the best model.
Formalizes spatial support at scale for ecological and geographical analysis. Given points and support polygons, classifies points as "core" (inside original support) or "halo" (inside scaled support but outside original), pruning all others. The default scale produces equal core and halo areas - a geometrically derived choice requiring no tuning. An optional mask enforces hard boundaries such as coastlines. Political borders are treated as soft boundaries with no ecological meaning.
This package provides a varied array of mathematical derivations from various titrimetric and colorimetric methods for analyzing water quality parameters were condensed and integrated for the better physicochemical analysis. It is indispensable for managing any aquatic ecosystem, including aquaculture facilities. By substituting titrant and spectrophotometric absorbance readings, accurate determination of the concentrations of critical parameters such as Dissolved Oxygen, Free Carbon Dioxide, Total Alkalinity, Water Hardness, Hydrogen Sulfide, Total Ammonia Nitrogen, Nitrite, Nitrate, Chlorinity, Salinity, Inorganic Phosphate, and Transparency can be facilitated APHA(2017,ISBN:9780875532875).
Analysis of task-related functional magnetic resonance imaging (fMRI) activity at the level of individual participants is commonly based on general linear modelling (GLM) that allows us to estimate to what extent the blood oxygenation level dependent (BOLD) signal can be explained by task response predictors specified in the GLM model. The predictors are constructed by convolving the hypothesised timecourse of neural activity with an assumed hemodynamic response function (HRF). To get valid and precise estimates of task response, it is important to construct a model of neural activity that best matches actual neuronal activity. The construction of models is most often driven by predefined assumptions on the components of brain activity and their duration based on the task design and specific aims of the study. However, our assumptions about the onset and duration of component processes might be wrong and can also differ across brain regions. This can result in inappropriate or suboptimal models, bad fitting of the model to the actual data and invalid estimations of brain activity. Here we present an approach in which theoretically driven models of task response are used to define constraints based on which the final model is derived computationally using the actual data. Specifically, we developed autohrf รข a package for the R programming language that allows for data-driven estimation of HRF models. The package uses genetic algorithms to efficiently search for models that fit the underlying data well. The package uses automated parameter search to find the onset and duration of task predictors which result in the highest fitness of the resulting GLM based on the fMRI signal under predefined restrictions. We evaluate the usefulness of the autohrf package on publicly available datasets of task-related fMRI activity. Our results suggest that by using autohrf users can find better task related brain activity models in a quick and efficient manner.
Parse R code in a given directory for R packages and attempt to install them from CRAN or GitHub. Optionally use a dependencies file for tighter control over which package versions to install.
Fits from simple regression to highly customizable deep neural networks either with gradient descent or metaheuristic, using automatic hyper parameters tuning and custom cost function. A mix inspired by the common tricks on Deep Learning and Particle Swarm Optimization.
Training of neural networks for classification and regression tasks using mini-batch gradient descent. Special features include a function for training autoencoders, which can be used to detect anomalies, and some related plotting functions. Multiple activation functions are supported, including tanh, relu, step and ramp. For the use of the step and ramp activation functions in detecting anomalies using autoencoders, see Hawkins et al. (2002) <doi:10.1007/3-540-46145-0_17>. Furthermore, several loss functions are supported, including robust ones such as Huber and pseudo-Huber loss, as well as L1 and L2 regularization. The possible options for optimization algorithms are RMSprop, Adam and SGD with momentum. The package contains a vectorized C++ implementation that facilitates fast training through mini-batch learning.
Probability surveys often use auxiliary continuous data from administrative records, but the utility of this data is diminished when it is discretized for confidentiality. We provide a set of survey estimators to make full use of information from the discretized variables. See Williams, S.Z., Zou, J., Liu, Y., Si, Y., Galea, S. and Chen, Q. (2024), Improving Survey Inference Using Administrative Records Without Releasing Individual-Level Continuous Data. Statistics in Medicine, 43: 5803-5813. <doi:10.1002/sim.10270> for details.
Linear and nonlinear regression analysis common in agricultural science articles (Archontoulis & Miguez (2015). <doi:10.2134/agronj2012.0506>). The package includes polynomial, exponential, gaussian, logistic, logarithmic, segmented, non-parametric models, among others. The functions return the model coefficients and their respective p values, coefficient of determination, root mean square error, AIC, BIC, as well as graphs with the equations automatically.
This package provides functions to process minute level actigraphy-measured activity counts data and extract commonly used physical activity volume and fragmentation metrics.
Acknowledge all contributors to a project via a single function call. The function appends to a README or other specified file(s) a table with names of all individuals who contributed via code or repository issues. The package also includes several additional functions to extract and quantify contributions to any repository.
This package provides scalable generalized linear and mixed effects models tailored for sequence count data analysis (e.g., analysis of 16S or RNA-seq data). Uses Dirichlet-multinomial sampling to quantify uncertainty in relative abundance or relative expression conditioned on observed count data. Implements scale models as a generalization of normalizations which account for uncertainty in scale (e.g., total abundances) as described in Nixon et al. (2025) <doi:10.1186/s13059-025-03609-3> and McGovern et al. (2025) <doi:10.1101/2025.08.05.668734>.