Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides function for area level of small area estimation using hierarchical Bayesian (HB) method with Zero-Inflated Binomial distribution for variables of interest. Some dataset produced by a data generation are also provided. The rjags package is employed to obtain parameter estimates. Model-based estimators involves the HB estimators which include the mean and the variation of mean.
Calculates a modified Simplified Surface Energy Balance Index (SSEBI) and the Evaporative Fraction (EF) using geospatial raster data such as albedo and surface-air temperature difference (TSâ TA). The SSEBI is computed from albedo and TSâ TA to estimate surface moisture and evaporative dynamics, providing a robust assessment of surface dryness while accounting for atmospheric variations. Based on Roerink, Su, and Menenti (2000) <doi:10.1016/S1464-1909(99)00128-8>.
Run SQL queries across Snowflake', Amazon Redshift', PostgreSQL', SQLite', and DuckDB from R with a single function. Optionally stream and cache large query results to a local DuckDB database for efficient work with larger-than-memory datasets.
This package provides two main functionalities. 1 - Given a system of simultaneous equation, it decomposes the matrix of coefficients weighting the endogenous variables into three submatrices: one includes the subset of coefficients that have a causal nature in the model, two include the subset of coefficients that have a interdependent nature in the model, either at systematic level or induced by the correlation between error terms. 2 - Given a decomposed model, it tests for the significance of the interdependent relationships acting in the system, via Maximum likelihood and Wald test, which can be built starting from the function output. For theoretical reference see Faliva (1992) <doi:10.1007/BF02589085> and Faliva and Zoia (1994) <doi:10.1007/BF02589041>.
This package provides a new diagram for the verification of vector variables (wind, current, etc) generated by multiple models against a set of observations is presented in this package. It has been designed as a generalization of the Taylor diagram to two dimensional quantities. It is based on the analysis of the two-dimensional structure of the mean squared error matrix between model and observations. The matrix is divided into the part corresponding to the relative rotation and the bias of the empirical orthogonal functions of the data. The full set of diagnostics produced by the analysis of the errors between model and observational vector datasets comprises the errors in the means, the analysis of the total variance of both datasets, the rotation matrix corresponding to the principal components in observation and model, the angle of rotation of model-derived empirical orthogonal functions respect to the ones from observations, the standard deviation of model and observations, the root mean squared error between both datasets and the squared two-dimensional correlation coefficient. See the output of function UVError() in this package.
Stochastic Newton Sampler (SNS) is a Metropolis-Hastings-based, Markov Chain Monte Carlo sampler for twice differentiable, log-concave probability density functions (PDFs) where the proposal density function is a multivariate Gaussian resulting from a second-order Taylor-series expansion of log-density around the current point. The mean of the Gaussian proposal is the full Newton-Raphson step from the current point. A Boolean flag allows for switching from SNS to Newton-Raphson optimization (by choosing the mean of proposal function as next point). This can be used during burn-in to get close to the mode of the PDF (which is unique due to concavity). For high-dimensional densities, mixing can be improved via state space partitioning strategy, in which SNS is applied to disjoint subsets of state space, wrapped in a Gibbs cycle. Numerical differentiation is available when analytical expressions for gradient and Hessian are not available. Facilities for validation and numerical differentiation of log-density are provided. Note: Formerly available versions of the MfUSampler can be obtained from the archive <https://cran.r-project.org/src/contrib/Archive/MfUSampler/>.
This package provides some easy-to-use functions to interpolate species range based on species occurrences and to estimate centers of biodiversity.
An automatic cell type detection and assignment algorithm for single cell RNA-Seq and Cytof/FACS data. SCINA is capable of assigning cell type identities to a pool of cells profiled by scRNA-Seq or Cytof/FACS data with prior knowledge of markers, such as genes and protein symbols that are highly or lowly expressed in each category. See Zhang Z, et al (2019) <doi:10.3390/genes10070531> for more details.
Fits Bayesian spatio-temporal models and makes predictions on stream networks using the approach by Santos-Fernandez, Edgar, et al. (2022)."Bayesian spatio-temporal models for stream networks". <arXiv:2103.03538>. In these models, spatial dependence is captured using stream distance and flow connectivity, while temporal autocorrelation is modelled using vector autoregression methods.
This package provides an interface to search, read, query, and retrieve metadata for datasets hosted on Socrata open data portals. Supports all Socrata data types, including spatial data returned as sf objects.
The Patient Rule Induction Method (PRIM) is typically used for "bump hunting" data mining to identify regions with abnormally high concentrations of data with large or small values. This package extends this methodology so that it can be applied to binary classification problems and used for prediction.
Statistical analysis methods for environmental data are implemented. There is a particular focus on robust methods, and on methods for compositional data. In addition, larger data sets from geochemistry are provided. The statistical methods are described in Reimann, Filzmoser, Garrett, Dutter (2008, ISBN:978-0-470-98581-6).
Mixed-effect proportional hazards models for multistage stratified, cluster-sampled, unequally weighted survey samples. Provides variance estimation by Taylor series linearisation or replicate weights.
Troubleshooting reactive data in shiny can be difficult. These functions will convert reactive data frames into functions and load all assigned objects into your local environment. If you create a dummy input object, as the function will suggest, you will be able to test your server and ui functions interactively.
This package provides an interface to a Simplex Tree data structure, which is a data structure aimed at enabling efficient manipulation of simplicial complexes of any dimension. The Simplex Tree data structure was originally introduced by Jean-Daniel Boissonnat and Clément Maria (2014) <doi:10.1007/s00453-014-9887-3>.
The Structural Topic and Sentiment-Discourse (STS) model allows researchers to estimate topic models with document-level metadata that determines both topic prevalence and sentiment-discourse. The sentiment-discourse is modeled as a document-level latent variable for each topic that modulates the word frequency within a topic. These latent topic sentiment-discourse variables are controlled by the document-level metadata. The STS model can be useful for regression analysis with text data in addition to topic modelingâ s traditional use of descriptive analysis. The method was developed in Chen and Mankad (2024) <doi:10.1287/mnsc.2022.00261>.
Develops a framework for fisheries stock assessment simulation testing with Stock Synthesis (SS) as described in Anderson et al. (2014) <doi:10.1371/journal.pone.0092725>.
Utilities to support spatial data manipulation, query, sampling and modelling in ecological applications. Functions include models for species population density, spatial smoothing, multivariate separability, point process model for creating pseudo- absences and sub-sampling, Quadrant-based sampling and analysis, auto-logistic modeling, sampling models, cluster optimization, statistical exploratory tools and raster-based metrics.
Gives design points from a sequential full factorial-based Latin hypercube design, as described in Duan, Ankenman, Sanchez, and Sanchez (2015, Technometrics, <doi:10.1080/00401706.2015.1108233>).
R-side code to implement an R editor and IDE in Komodo IDE with the SciViews-K extension.
This package provides a set of plotting methods for simmer trajectories and simulations.
This package implements the Scout method for regression, described in "Covariance-regularized regression and classification for high-dimensional problems", by Witten and Tibshirani (2008), Journal of the Royal Statistical Society, Series B 71(3): 615-636.
This package provides methods for the computation of surface/image texture indices using a geostatistical based approach (Trevisani et al. (2023) <doi:10.1016/j.geomorph.2023.108838>). It provides various functions for the computation of surface texture indices (e.g., omnidirectional roughness and roughness anisotropy), including the ones based on the robust MAD estimator. The kernels included in the software permit also to calculate the surface/image texture indices directly from the input surface (i.e., without de-trending) using increments of order 2. It also provides the new radial roughness index (RRI), representing the improvement of the popular topographic roughness index (TRI). The framework can be easily extended with ad-hoc surface/image texture indices.
Implementations of a large number of tests for symmetry and their bootstrap variants, which can be used for testing the symmetry of random samples around a known or unknown mean. Functions are also there for testing the symmetry of model residuals around zero. Currently, the supported models are linear models and generalized autoregressive conditional heteroskedasticity (GARCH) models (fitted with the fGarch package). All tests are implemented using the Rcpp package which ensures great performance of the code.