Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Compound deconvolution for chromatographic data, including gas chromatography - mass spectrometry (GC-MS) and comprehensive gas chromatography - mass spectrometry (GCxGC-MS). The package includes functions to perform independent component analysis - orthogonal signal deconvolution (ICA-OSD), independent component regression (ICR), multivariate curve resolution (MCR-ALS) and orthogonal signal deconvolution (OSD) alone.
Search and extract data from the Organization for Economic Cooperation and Development (OECD).
We provide an R interface to OpenML.org which is an online machine learning platform where researchers can access open data, download and upload data sets, share their machine learning tasks and experiments and organize them online to work and collaborate with other researchers. The R interface allows to query for data sets with specific properties, and allows the downloading and uploading of data sets, tasks, flows and runs. See <https://www.openml.org/guide/api> for more information.
This package provides a collection of aesthetically appealing color palettes for effective data visualization with ggplot2'. Palettes support both discrete and continuous data.
Designed for performing impact analysis of opinions in a digital text document (DTD). The package allows a user to assess the extent to which a theme or subject within a document impacts the overall opinion expressed in the document. The package can be applied to a wide range of opinion-based DTD, including commentaries on social media platforms (such as Facebook', Twitter and Youtube'), online products reviews, and so on. The utility of opitools was originally demonstrated in Adepeju and Jimoh (2021) <doi:10.31235/osf.io/c32qh> in the assessment of COVID-19 impacts on neighbourhood policing using Twitter data. Further examples can be found in the vignette of the package.
Optimal scaling of a data vector, relative to a set of targets, is obtained through a least-squares transformation subject to appropriate measurement constraints. The targets are usually predicted values from a statistical model. If the data are nominal level, then the transformation must be identity-preserving. If the data are ordinal level, then the transformation must be monotonic. If the data are discrete, then tied data values must remain tied in the optimal transformation. If the data are continuous, then tied data values can be untied in the optimal transformation.
The log-rank test is performed to assess the survival outcomes between two group. When there is no proper control group or obtaining such data is cumbersome, one sample log-rank test can be applied. This package performs one sample log-rank test as described in Finkelstein et al. (2003)<doi:10.1093/jnci/djt227> and variation of the test for small sample sizes which is detailed in FD Liddell (1984)<doi:10.1136/jech.38.1.85> paper. Visualization function in the package generates Kaplan-Meier Curve comparing survival curve of the general population against that of the population of interest.
Detection of overdispersion in count data for multiple regression analysis. Log-linear count data regression is one of the most popular techniques for predictive modeling where there is a non-negative discrete quantitative dependent variable. In order to ensure the inferences from the use of count data models are appropriate, researchers may choose between the estimation of a Poisson model and a negative binomial model, and the correct decision for prediction from a count data estimation is directly linked to the existence of overdispersion of the dependent variable, conditional to the explanatory variables. Based on the studies of Cameron and Trivedi (1990) <doi:10.1016/0304-4076(90)90014-K> and Cameron and Trivedi (2013, ISBN:978-1107667273), the overdisp() command is a contribution to researchers, providing a fast and secure solution for the detection of overdispersion in count data. Another advantage is that the installation of other packages is unnecessary, since the command runs in the basic R language.
Provide functions for users or machines to quickly and easily retrieve datasets from the mindat.org API (<https://api.mindat.org/schema/redoc/>).
Ordered homogeneity pursuit lasso (OHPL) algorithm for group variable selection proposed in Lin et al. (2017) <DOI:10.1016/j.chemolab.2017.07.004>. The OHPL method exploits the homogeneity structure in high-dimensional data and enjoys the grouping effect to select groups of important variables automatically. This feature makes it particularly useful for high-dimensional datasets with strongly correlated variables, such as spectroscopic data.
This package provides tools designed to make it easier for users, particularly beginner/intermediate R users to build ordinary least squares regression models. Includes comprehensive regression output, heteroskedasticity tests, collinearity diagnostics, residual diagnostics, measures of influence, model fit assessment and variable selection procedures.
Detect the number and locations of change points. The locations can be either exact or in terms of ranges, depending on the available computational resource. The method is based on Jie Ding, Yu Xiang, Lu Shen, Vahid Tarokh (2017) <doi:10.1109/TSP.2017.2711558>.
Analysis of molecular marker data from model and non-model systems. For the later, it allows statistical analysis by simultaneously estimating linkage and linkage phases (genetic map construction) according to Wu and colleagues (2002) <doi:10.1006/tpbi.2002.1577>. All analysis are based on multi-point approaches using hidden Markov models.
Open Location Codes <http://openlocationcode.com/> are a Google-created standard for identifying geographic locations. olctools provides utilities for validating, encoding and decoding entries that follow this standard.
After develop a ODK <https://opendatakit.org/> frame, we can link the frame to Google Sheets <https://www.google.com/sheets/about/> and collect data through Android <https://www.android.com/>. This data uploaded to a Google sheets'. odk2spss() function help to convert the odk frame into SPSS <https://www.ibm.com/analytics/us/en/technology/spss/> frame. Also able to add downloaded Google sheets data or read data from Google sheets by using ODK frame submission_url'.
This package provides a framework for the optimization of breeding programs via optimum contribution selection and mate allocation. An easy to use set of function for computation of optimum contributions of selection candidates, and of the population genetic parameters to be optimized. These parameters can be estimated using pedigree or genotype information, and include kinships, kinships at native haplotype segments, and breed composition of crossbred individuals. They are suitable for managing genetic diversity, removing introgressed genetic material, and accelerating genetic gain. Additionally, functions are provided for computing genetic contributions from ancestors, inbreeding coefficients, the native effective size, the native genome equivalent, pedigree completeness, and for preparing and plotting pedigrees. The methods are described in:\n Wellmann, R., and Pfeiffer, I. (2009) <doi:10.1017/S0016672309000202>.\n Wellmann, R., and Bennewitz, J. (2011) <doi:10.2527/jas.2010-3709>.\n Wellmann, R., Hartwig, S., Bennewitz, J. (2012) <doi:10.1186/1297-9686-44-34>.\n de Cara, M. A. R., Villanueva, B., Toro, M. A., Fernandez, J. (2013) <doi:10.1111/mec.12560>.\n Wellmann, R., Bennewitz, J., Meuwissen, T.H.E. (2014) <doi:10.1017/S0016672314000196>.\n Wellmann, R. (2019) <doi:10.1186/s12859-018-2450-5>.
The separate p-values of SNPs, RNA expressions and DNA methylations are calculated by KM regression. The correlation between different omics data are taken into account. This method can be applied to either samples with all three types of omics data or samples with two types.
Optimal group-sequential designs minimise some function of the expected and maximum sample size whilst controlling the type I error rate and power at a specified level. OptGS provides functions to quickly search for near-optimal group-sequential designs for normally distributed outcomes. The methods used are described in Wason, JMS (2015) <doi:10.18637/jss.v066.i02>.
Interface to make HTTP requests to OpenBlender API services. Go to <https://openblender.io> for more information.
Supports the modeling of ordinal random variables, like the outcomes of races, via Softmax regression, under the Harville <doi:10.1080/01621459.1973.10482425> and Henery <doi:10.1111/j.2517-6161.1981.tb01153.x> models.
This package provides simple crosstab output with optional statistics (e.g., Goodman-Kruskal Gamma, Somers d, and Kendall's tau-b) as well as two-way and one-way tables. The package is used within the statistics component of the Masters of Science (MSc) in Social Science of the Internet at the Oxford Internet Institute (OII), University of Oxford, but the functions should be useful for general data analysis and especially for analysis of categorical and ordinal data.
This package provides a decision support tool for prioritizing conservation projects. Prioritizations can be developed by maximizing expected feature richness, expected phylogenetic diversity, the number of features that meet persistence targets, or identifying a set of projects that meet persistence targets for minimal cost. Constraints (e.g. lock in specific actions) and feature weights can also be specified to further customize prioritizations. After defining a project prioritization problem, solutions can be obtained using exact algorithms, heuristic algorithms, or random processes. In particular, it is recommended to install the Gurobi optimizer (available from <https://www.gurobi.com>) because it can identify optimal solutions very quickly. Finally, methods are provided for comparing different prioritizations and evaluating their benefits. For more information, see Hanson et al. (2019) <doi:10.1111/2041-210X.13264>.
An object is called "outlier" if it remarkably deviates from the other objects in a data set. Outlier detection is the process to find outliers by using the methods that are based on distance measures, clustering and spatial methods (Ben-Gal, 2005 <ISBN 0-387-24435-2>). It is one of the intensively studied research topics for identification of novelties, frauds, anomalies, deviations or exceptions in addition to its use for outlier removing in data processing. This package provides the implementations of some novel approaches to detect the outliers based on typicality degrees that are obtained with the soft partitioning clustering algorithms such as Fuzzy C-means and its variants.
Make querying on OData easier. It exposes an ODataQuery object that can be manipulated and provides features such as selection, filtering and ordering.