Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Multicenter randomized trials involve the collection and analysis of data from numerous study participants across multiple sites. Outliers may be present. To identify outliers, this package examines data at the individual level (univariate and multivariate) and site-level (with and without covariate adjustment). Methods are outlined in further detail in Rigdon et al (to appear).
It contains some example datasets used in bibliometrix'. The data are bibliographic datasets exported from the SCOPUS (<https://scopus.com>) and Clarivate Analytics Web of Science (<https://www.webofscience.com/>) databases. They can be used to test the different features of the package bibliometrix (<https://bibliometrix.org>).
Calculates the necessary quantities to perform Bayesian multigroup equivalence testing. Currently the package includes the Bayesian models and equivalence criteria outlined in Pourmohamad and Lee (2023) <doi:10.1002/sta4.645>, but more models and equivalence testing features may be added over time.
This package provides an accessible and robust implementation of core BME methodologies for spatial prediction. It enables the systematic integration of heterogeneous data sources including both hard data (precise measurements) and soft interval data (bounded or uncertain observations) while incorporating prior knowledge and supporting variogram-based spatial modeling. The BME methodology is described in Christakos (1990) <doi:10.1007/BF00890661> and Serre and Christakos (1999) <doi:10.1007/s004770050029>.
Several specialized statistical tests and support functions for determining if numerical data could conform to Benford's law.
The network autocorrelation model (NAM) can be used for studying the degree of social influence regarding an outcome variable based on one or more known networks. The degree of social influence is quantified via the network autocorrelation parameters. In case of a single network, the Bayesian methods of Dittrich, Leenders, and Mulder (2017) <DOI:10.1016/j.socnet.2016.09.002> and Dittrich, Leenders, and Mulder (2019) <DOI:10.1177/0049124117729712> are implemented using a normal, flat, or independence Jeffreys prior for the network autocorrelation. In the case of multiple networks, the Bayesian methods of Dittrich, Leenders, and Mulder (2020) <DOI:10.1177/0081175020913899> are implemented using a multivariate normal prior for the network autocorrelation parameters. Flat priors are implemented for estimating the coefficients. For Bayesian testing of equality and order-constrained hypotheses, the default Bayes factor of Gu, Mulder, and Hoijtink, (2018) <DOI:10.1111/bmsp.12110> is used with the posterior mean and posterior covariance matrix of the NAM parameters based on flat priors as input.
Implementation of the bootstrapping approach for the estimation of clustering stability and its application in estimating the number of clusters, as introduced by Yu et al (2016)<doi:10.1142/9789814749411_0007>. Implementation of the non-parametric bootstrap approach to assessing the stability of module detection in a graph, the extension for the selection of a parameter set that defines a graph from data in a way that optimizes stability and the corresponding visualization functions, as introduced by Tian et al (2021) <doi:10.1002/sam.11495>. Implemented out-of-bag stability estimation function and k-select Smin-based k-selection function as introduced by Liu et al (2022) <doi:10.1002/sam.11593>. Implemented ensemble clustering method based-on k-means clustering method, spectral clustering method and hierarchical clustering method.
This package provides functions to reconstruct, generate, and simulate synchronous, asynchronous, probabilistic, and temporal Boolean networks. Provides also functions to analyze and visualize attractors in Boolean networks <doi:10.1093/bioinformatics/btq124>.
This package implements a data-augmented block Gibbs sampler for simulating the posterior distribution of concentration matrices for specifying the topology and parameterization of a Gaussian Graphical Model (GGM). This sampler was originally proposed in Wang (2012) <doi:10.1214/12-BA729>.
This package provides an interface to data provided by the Bank for International Settlements <https://www.bis.org>, allowing for programmatic retrieval of a large quantity of (central) banking data.
Download data from the time-series databases of the Bundesbank, the German central bank. See the overview at the Bundesbank website (<https://www.bundesbank.de/en/statistics/time-series-databases>) for available series. The package provides only a single function, getSeries(), which supports both traditional and real-time datasets; it will also download meta data if available. Downloaded data can automatically be arranged in various formats, such as data frames or zoo series. The data may optionally be cached, so as to avoid repeated downloads of the same series.
Sample dataframes by group, in the form of a block bootstrap'. Entire groups are returned allowing for a single observation to span multiple rows of the dataframe.
This package implements the distance measure for mixed-scale variables proposed by Buttler and Fickel (1995), based on normalized mean pairwise distances (Gini mean difference), and an R2 statistic to assess clustering quality.
Israeli baby names provided by Israel's Central Bureau of Statistics. The package contains only names used for at least 5 children in at least one gender and sector ("Jewish", "Muslim", "Christian", "Druze" and "Other"). Data was downloaded from: <https://www.cbs.gov.il/he/publications/LochutTlushim/2020/%D7%A9%D7%9E%D7%95%D7%AA-%D7%A4%D7%A8%D7%98%D7%99%D7%99%D7%9D.xlsx>.
Data on the first 24 seasons of the UK TV show I'm a Celebrity, Get Me Out of Here', broadcast from 2002-2024. Taken from the Wikipedia pages for each season and the main page available at <https://en.wikipedia.org/wiki/I%27m_a_Celebrity...Get_Me_Out_of_Here!_(British_TV_series)>.
This package provides a fast and intuitive batch effect removal tool for single-cell data. BBKNN is originally used in the scanpy python package, and now can be used with Seurat seamlessly.
Bayesian inferences on nonparametric regression via Gaussian Processes with a modified exponential square kernel using a basis expansion approach.
This package implements the Block-wise Rank in Similarity Graph Edge-count test (BRISE), a rank-based two-sample test designed for block-wise missing data. The method constructs (pattern) pair-wise similarity graphs and derives quadratic test statistics with asymptotic chi-square distribution or permutation-based p-values. It provides both vectorized and congregated versions for flexible inference. The methodology is described in Zhang, Liang, Maile, and Zhou (2025) <doi:10.48550/arXiv.2508.17411>.
Evaluates the probability density function, cumulative distribution function, quantile function, random numbers, survival function, hazard rate function, and maximum likelihood estimates for the following distributions: Bell exponential, Bell extended exponential, Bell Weibull, Bell extended Weibull, Bell-Fisk, Bell-Lomax, Bell Burr-XII, Bell Burr-X, complementary Bell exponential, complementary Bell extended exponential, complementary Bell Weibull, complementary Bell extended Weibull, complementary Bell-Fisk, complementary Bell-Lomax, complementary Bell Burr-XII and complementary Bell Burr-X distribution. Related work includes: a) Fayomi A., Tahir M. H., Algarni A., Imran M. and Jamal F. (2022). "A new useful exponential model with applications to quality control and actuarial data". Computational Intelligence and Neuroscience, 2022. <doi:10.1155/2022/2489998>. b) Alanzi, A. R., Imran M., Tahir M. H., Chesneau C., Jamal F. Shakoor S. and Sami, W. (2023). "Simulation analysis, properties and applications on a new Burr XII model based on the Bell-X functionalities". AIMS Mathematics, 8(3): 6970-7004. <doi:10.3934/math.2023352>. c) Algarni A. (2022). "Group Acceptance Sampling Plan Based on New Compounded Three-Parameter Weibull Model". Axioms, 11(9): 438. <doi:10.3390/axioms11090438>.
This package provides functions streamlining the data analysis workflow: Outsourcing data import, renaming and type casting to a *.csv. Manipulating imputed datasets and fitting models on them. Summarizing models.
Bayesian survival model using Weibull regression on both scale and shape parameters. Dependence of shape parameter on covariates permits deviation from proportional-hazard assumption, leading to dynamic - i.e. non-constant with time - hazard ratios between subjects. Bayesian Lasso shrinkage in the form of two Laplace priors - one for scale and one for shape coefficients - allows for many covariates to be included. Cross-validation helper functions can be used to tune the shrinkage parameters. Monte Carlo Markov Chain (MCMC) sampling using a Gibbs wrapper around Radford Neal's univariate slice sampler (R package MfUSampler) is used for coefficient estimation.
Understanding the drivers of microbial diversity is an important frontier of microbial ecology, and investigating the diversity of samples from microbial ecosystems is a common step in any microbiome analysis. breakaway is the premier package for statistical analysis of microbial diversity. breakaway implements the latest and greatest estimates of species richness, described in Willis and Bunge (2015) <doi:10.1111/biom.12332>, Willis et al. (2017) <doi:10.1111/rssc.12206>, and Willis (2016) <arXiv:1604.02598>, as well as the most commonly used estimates, including the objective Bayes approach described in Barger and Bunge (2010) <doi:10.1214/10-BA527>.
Toolkit for Bayesian estimation of the dependence structure in multivariate extreme value parametric models, following Sabourin and Naveau (2014) <doi:10.1016/j.csda.2013.04.021> and Sabourin, Naveau and Fougeres (2013) <doi:10.1007/s10687-012-0163-0>.
This package provides functions for calculating biochemical methane potential (BMP) from laboratory measurements and other types of data processing and prediction useful for biogas research. Raw laboratory measurements for diverse methods (volumetric, manometric, gravimetric, gas density) can be processed to calculate BMP. Theoretical maximum BMP or methane or biogas yield can be predicted from various measures of substrate composition. Molar mass and calculated oxygen demand (COD') can be determined from a chemical formula. Measured gas volume can be corrected for water vapor and to standard (or user-defined) temperature and pressure. Gas quantity can be converted between volume, mass, and moles. A function for planning BMP experiments can consider multiple constraints in suggesting substrate or inoculum quantities, and check for problems. Inoculum and substrate mass can be determined for planning BMP experiments. Finally, a set of first-order models can be fit to measured methane production rate or cumulative yield in order to extract estimates of ultimate yield and kinetic constants. See Hafner et al. (2018) <doi:10.1016/j.softx.2018.06.005> for details. OBA is a web application that provides access to some of the package functionality: <https://biotransformers.shinyapps.io/oba1/>. The Standard BMP Methods website documents the calculations in detail: <https://www.dbfz.de/en/BMP>.