Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package performs Bayesian prediction of complex computer codes when fast approximations are available. It uses a hierarchical version of the Gaussian process, originally proposed by Kennedy and O'Hagan (2000), Biometrika 87(1):1.
This package provides sleep duration estimates using a Pruned Dynamic Programming (PDP) algorithm that efficiently identifies change-points. PDP applied to physical activity data can identify transitions from wakefulness to sleep and vice versa. Baek, Jonggyu, Banker, Margaret, Jansen, Erica C., She, Xichen, Peterson, Karen E., Pitchford, E. Andrew, Song, Peter X. K. (2021) An Efficient Segmentation Algorithm to Estimate Sleep Duration from Actigraphy Data <doi:10.1007/s12561-021-09309-3>.
Utilities designed to make the analysis of field trials easier and more accessible for everyone working in plant breeding. It provides a simple and intuitive interface for conducting single and multi-environmental trial analysis, with minimal coding required. Whether you're a beginner or an experienced user, agriutilities will help you quickly and easily carry out complex analyses with confidence. With built-in functions for fitting Linear Mixed Models, agriutilities is the ideal choice for anyone who wants to save time and focus on interpreting their results. Some of the functions require the R package asreml for the ASReml software, this can be obtained upon purchase from VSN international <https://vsni.co.uk/software/asreml-r/>.
This package implements a constrained version of hierarchical agglomerative clustering, in which each observation is associated to a position, and only adjacent clusters can be merged. Typical application fields in bioinformatics include Genome-Wide Association Studies or Hi-C data analysis, where the similarity between items is a decreasing function of their genomic distance. Taking advantage of this feature, the implemented algorithm is time and memory efficient. This algorithm is described in Ambroise et al (2019) <doi:10.1186/s13015-019-0157-4>.
Interface package for sala', the spatial network analysis library from the depthmapX software application. The R parts of the code are based on the rdepthmap package. Allows for the analysis of urban and building-scale networks and provides metrics and methods usually found within the Space Syntax domain. Methods in this package are described by K. Al-Sayed, A. Turner, B. Hillier, S. Iida and A. Penn (2014) "Space Syntax methodology", and also by A. Turner (2004) <https://discovery.ucl.ac.uk/id/eprint/2651> "Depthmap 4: a researcher's handbook".
Extremely efficient procedures for fitting the entire group lasso and group elastic net regularization path for GLMs, multinomial, the Cox model and multi-task Gaussian models. Similar to the R package glmnet in scope of models, and in computational speed. This package provides R bindings to the C++ code underlying the corresponding Python package adelie'. These bindings offer a general purpose group elastic net solver, a wide range of matrix classes that can exploit special structure to allow large-scale inputs, and an assortment of generalized linear model classes for fitting various types of data. The package is an implementation of Yang, J. and Hastie, T. (2024) <doi:10.48550/arXiv.2405.08631>.
Exploration of Weather Research & Forecasting ('WRF') Model data of Servicio Meteorologico Nacional (SMN) from Amazon Web Services (<https://registry.opendata.aws/smn-ar-wrf-dataset/>) cloud. The package provides the possibility of data downloading, processing and correction methods. It also has map management and series exploration of available meteorological variables of WRF forecast.
This package contains data from an observational study concerning possible effects of light daily alcohol consumption on survival and on HDL cholesterol. It also replicates various simple analyses in Rosenbaum (2025a) <doi:10.1080/09332480.2025.2473291>. Finally, it includes new R code in wgtRankCef() that implements and replicates a new method for constructing evidence factors in observational block designs.
Core methods and classes used by higher-level aroma.* packages part of the Aroma Project, e.g. aroma.affymetrix and aroma.cn'.
This package provides tools for the identification of unique of multilocus genotypes when both genotyping error and missing data may be present; targeted for use with large datasets and databases containing multiple samples of each individual (a common situation in conservation genetics, particularly in non-invasive wildlife sampling applications). Functions explicitly incorporate missing data and can tolerate allele mismatches created by genotyping error. If you use this package, please cite the original publication in Molecular Ecology Resources (Galpern et al., 2012), the details for which can be generated using citation('allelematch'). For a complete vignette, please access via the Data S1 Supplementary documentation and tutorials (PDF) located at <doi:10.1111/j.1755-0998.2012.03137.x>.
Analysis of means (ANOM) as used in technometrical computing. The package takes results from multiple comparisons with the grand mean (obtained with multcomp', SimComp', nparcomp', or MCPAN') or corresponding simultaneous confidence intervals as input and produces ANOM decision charts that illustrate which group means deviate significantly from the grand mean.
Adaptive Rejection Sampling, Original version.
Producing probabilistic projections of net migration rate for all countries of the world or for subnational units using a Bayesian hierarchical model by Azose an Raftery (2015) <doi:10.1007/s13524-015-0415-0>.
Search, query, and download tabular and geospatial data from the British Columbia Data Catalogue (<https://catalogue.data.gov.bc.ca/>). Search catalogue data records based on keywords, data licence, sector, data format, and B.C. government organization. View metadata directly in R, download many data formats, and query geospatial data available via the B.C. government Web Feature Service ('WFS') using dplyr syntax.
This package provides methods for probabilistic reconciliation of hierarchical forecasts of time series. The available methods include analytical Gaussian reconciliation (Corani et al., 2021) <doi:10.1007/978-3-030-67664-3_13>, MCMC reconciliation of count time series (Corani et al., 2024) <doi:10.1016/j.ijforecast.2023.04.003>, Bottom-Up Importance Sampling (Zambon et al., 2024) <doi:10.1007/s11222-023-10343-y>, methods for the reconciliation of mixed hierarchies (Mix-Cond and TD-cond) (Zambon et al., 2024) <https://proceedings.mlr.press/v244/zambon24a.html>.
Bayesian Mixture Survival Models using Additive Mixture-of-Weibull Hazards, with Lasso Shrinkage and Stratification. As a Bayesian dynamic survival model, it relaxes the proportional-hazard assumption. Lasso shrinkage controls overfitting, given the increase in the number of free parameters in the model due to presence of two Weibull components in the hazard function.
Causal inference for a binary treatment and continuous outcome using Bayesian Causal Forests. See Hahn, Murray and Carvalho (2020) <doi:10.1214/19-BA1195> for additional information. This implementation relies on code originally accompanying Pratola et. al. (2013) <arXiv:1309.1906>.
Allows access to data from the Brazilian Public Security Information System (SINESP) by state and municipality. It should be emphasized that the package only extracts the data and facilitates its manipulation in R. Therefore, its sole purpose is to support empirical research. All data credits belong to SINESP, an integrated information platform developed and maintained by the National Secretariat of Public Security (SENASP) of the Ministry of Justice and Public Security. <https://www.gov.br/mj/pt-br/assuntos/sua-seguranca/seguranca-publica/sinesp-1>.
This package contains data and code to accompany the book P. Zuccolotto and M. Manisera (2020) Basketball Data Science. Applications with R. CRC Press. ISBN 9781138600799.
This package provides users with an EZ-to-use platform for representing data with biplots. Currently principal component analysis (PCA), canonical variate analysis (CVA) and simple correspondence analysis (CA) biplots are included. This is accompanied by various formatting options for the samples and axes. Alpha-bags and concentration ellipses are included for visual enhancements and interpretation. For an extensive discussion on the topic, see Gower, J.C., Lubbe, S. and le Roux, N.J. (2011, ISBN: 978-0-470-01255-0) Understanding Biplots. Wiley: Chichester.
Estimate population average treatment effects from a primary data source with borrowing from supplemental sources. Causal estimation is done with either a Bayesian linear model or with Bayesian additive regression trees (BART) to adjust for confounding. Borrowing is done with multisource exchangeability models (MEMs). For information on BART, see Chipman, George, & McCulloch (2010) <doi:10.1214/09-AOAS285>. For information on MEMs, see Kaizer, Koopmeiners, & Hobbs (2018) <doi:10.1093/biostatistics/kxx031>.
This package provides functions to compute distances between probability measures or any other data object than can be posed in this way, entropy measures for samples of curves, distances and depth measures for functional data, and the Generalized Mahalanobis Kernel distance for high dimensional data. For further details about the metrics please refer to Martos et al (2014) <doi:10.3233/IDA-140706>; Martos et al (2018) <doi:10.3390/e20010033>; Hernandez et al (2018, submitted); Martos et al (2018, submitted).
This package provides functions to perform Bayesian nonparametric univariate and multivariate density estimation and clustering, by means of Pitman-Yor mixtures, and dependent Dirichlet process mixtures for partially exchangeable data. See Corradin et al. (2021) <doi:10.18637/jss.v100.i15> for more details.
This package provides a wrapper to allow users to download Bus Open Data Service BODS transport information from the API (<https://www.bus-data.dft.gov.uk/>). This includes timetable and fare metadata (including links for full datasets), timetable data at line level, and real-time location data.