Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
multiHiCcompare provides functions for joint normalization and difference detection in multiple Hi-C datasets. This extension of the original HiCcompare package now allows for Hi-C experiments with more than 2 groups and multiple samples per group. multiHiCcompare operates on processed Hi-C data in the form of sparse upper triangular matrices. It accepts four column (chromosome, region1, region2, IF) tab-separated text files storing chromatin interaction matrices. multiHiCcompare provides cyclic loess and fast loess (fastlo) methods adapted to jointly normalizing Hi-C data. Additionally, it provides a general linear model (GLM) framework adapting the edgeR package to detect differences in Hi-C data in a distance dependent manner.
This package aims to perform power analysis for the MeRIP-seq study. It calculates FDR, FDC, power, and precision under various study design parameters, including but not limited to sample size, sequencing depth, and testing method. It can also output results into .xlsx files or produce corresponding figures of choice.
MSstatsPTM provides general statistical methods for quantitative characterization of post-translational modifications (PTMs). Supports DDA, DIA, SRM, and tandem mass tag (TMT) labeling. Typically, the analysis involves the quantification of PTM sites (i.e., modified residues) and their corresponding proteins, as well as the integration of the quantification results. MSstatsPTM provides functions for summarization, estimation of PTM site abundance, and detection of changes in PTMs across experimental conditions.
This package contains tools and methods for preprocessing microbiome data. Functionality includes library generation, demultiplexing, alignment, and microbe identification. It is in part an R translation of the PathoScope 2.0 pipeline.
affy and illumina raw data for assessing outlier detector performance.
This package contains example data for the MUGA array that is used by the R package DOQTL.
This package provides methods for genetic finemapping in inbred mice by taking advantage of their very high homozygosity rate (>95%).
Data used by the barcode package for microarrays of type mouse4302.
Genomic analysis can be utilised to identify differences between RNA populations in two conditions, both in production and abundance. This includes the identification of RNAs produced by multiple genomes within a biological system. For example, RNA produced by pathogens within a host or mobile RNAs in plant graft systems. The mobileRNA package provides methods to pre-process, analyse and visualise the sRNA and mRNA populations based on the premise of mapping reads to all genotypes at the same time.
MyGene.Info_ provides simple-to-use REST web services to query/retrieve gene annotation data. It's designed with simplicity and performance emphasized. *mygene*, is an easy-to-use R wrapper to access MyGene.Info_ services.
This package was created by frmaTools version 1.19.3 and hgu133ahsentrezgcdf version 19.0.0.
Package to integrate methylation and expression data. It can also perform methylation or expression analysis alone. Several plotting functionalities are included as well as a new region analysis based on redundancy analysis. Effect of SNPs on a region can also be estimated.
The package provides statistical tools for detecting differentially abundant proteins in shotgun mass spectrometry-based proteomic experiments with tandem mass tag (TMT) labeling. It provides multiple functionalities, including aata visualization, protein quantification and normalization, and statistical modeling and inference. Furthermore, it is inter-operable with other data processing tools, such as Proteome Discoverer, MaxQuant, OpenMS and SpectroMine.
This package detects statistically significant differences between read enrichment profiles in different ChIP-Seq samples. To take advantage of shape differences it uses Kernel methods (Maximum Mean Discrepancy, MMD).
Affymetrix Affymetrix Mu11KsubA Array annotation data (chip mu11ksuba) assembled using data from public repositories.
Store minor allele frequency data from the Exome Aggregation Consortium (ExAC release 1.0 subset of nonTCGA exomes) for the human genome version hs37d5.
MethylSig is a package for testing for differentially methylated cytosines (DMCs) or regions (DMRs) in whole-genome bisulfite sequencing (WGBS) or reduced representation bisulfite sequencing (RRBS) experiments. MethylSig uses a beta binomial model to test for significant differences between groups of samples. Several options exist for either site-specific or sliding window tests, and variance estimation.
The MouseAgingData package provides analysis-ready data resources from different studies focused on aging and rejuvenation in mice. The package currently provides two 10x Genomics single-cell RNA-seq datasets. The first study profiled the aging mouse brain measured across 37,089 cells (Ximerakis et al., 2019). The second study investigated parabiosis by profiling a total of 105,329 cells (Ximerakis & Holton et al., 2023). The datasets are provided as SingleCellExperiment objects and provide raw UMI counts and cell metadata.
Example data for M3Drop package.
Estimate distribution of methylation patterns from a table of counts from a bisulphite sequencing experiment given a non-conversion rate and read error rate.
Mixture Nested Effects Models (mnem) is an extension of Nested Effects Models and allows for the analysis of single cell perturbation data provided by methods like Perturb-Seq (Dixit et al., 2016) or Crop-Seq (Datlinger et al., 2017). In those experiments each of many cells is perturbed by a knock-down of a specific gene, i.e. several cells are perturbed by a knock-down of gene A, several by a knock-down of gene B, ... and so forth. The observed read-out has to be multi-trait and in the case of the Perturb-/Crop-Seq gene are expression profiles for each cell. mnem uses a mixture model to simultaneously cluster the cell population into k clusters and and infer k networks causally linking the perturbed genes for each cluster. The mixture components are inferred via an expectation maximization algorithm.
The matchBox package enables comparing ranked vectors of features, merging multiple datasets, removing redundant features, using CAT-plots and Venn diagrams, and computing statistical significance.
This package provides functions for fitting MOSAiCS and MOSAiCS-HMM, a statistical framework to analyze one-sample or two-sample ChIP-seq data of transcription factor binding and histone modification.
Mass spectrometry (MS) data backend supporting import and export of MS/MS spectra data from Mascot Generic Format (mgf) files. Objects defined in this package are supposed to be used with the Spectra Bioconductor package. This package thus adds mgf file support to the Spectra package.