Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Retrieves code comment decorations for C++ languages of the form \\ [[xyz]]', which are used for automated wrapping of C++ functions.
Offers statistical methods to compare diagnostic performance between two binary diagnostic tests on the same subject in clinical studies. Includes functions for generating formatted tables to display diagnostic outcomes, facilitating a clear and comprehensive comparison directly through the R console. Inspired by and extending the functionalities of the DTComPair', tableone', and gtsummary packages.
The DYMO package provides tools for multi-feature time-series forecasting using a Dynamic Mode Decomposition (DMD) model combined with conformal predictive sampling for uncertainty quantification.
This package provides a collection of functions that perform jump regression and image analysis such as denoising, deblurring and jump detection. The implemented methods are based on the following research: Qiu, P. (1998) <doi:10.1214/aos/1024691468>, Qiu, P. and Yandell, B. (1997) <doi: 10.1080/10618600.1997.10474746>, Qiu, P. (2009) <doi: 10.1007/s10463-007-0166-9>, Kang, Y. and Qiu, P. (2014) <doi: 10.1080/00401706.2013.844732>, Qiu, P. and Kang, Y. (2015) <doi: 10.5705/ss.2014.054>, Kang, Y., Mukherjee, P.S. and Qiu, P. (2018) <doi: 10.1080/00401706.2017.1415975>, Kang, Y. (2020) <doi: 10.1080/10618600.2019.1665536>.
Estimate and return the needed parameters for visualizations designed for OpenBudgets.eu <http://openbudgets.eu/> datasets. Calculate descriptive statistical measures in budget data of municipalities across Europe, according to the OpenBudgets.eu data model. There are functions for measuring central tendency and dispersion of amount variables along with their distributions and correlations and the frequencies of categorical variables for a given dataset. Also, can be used generally to other datasets, to extract visualization parameters, convert them to JSON format and use them as input in a different graphical interface.
This package provides methods for efficient algebraic operations and factorization of dyadic matrices using Rcpp and RcppArmadillo'. The details of dyadic matrices and the corresponding methodology are described in Kos, M., Podgórski, K., and Wu, H. (2025) <doi:10.48550/arXiv.2505.08144>.
This package provides density functions for the joint distribution of choice, response time and confidence for discrete confidence judgments as well as functions for parameter fitting, prediction and simulation for various dynamical models of decision confidence. All models are explained in detail by Hellmann et al. (2023; Preprint available at <https://osf.io/9jfqr/>, published version: <doi:10.1037/rev0000411>). Implemented models are the dynaViTE model, dynWEV model, the 2DSD model (Pleskac & Busemeyer, 2010, <doi:10.1037/a0019737>), and various race models. C++ code for dynWEV and 2DSD is based on the rtdists package by Henrik Singmann.
Test for no adverse shift in two-sample comparison when we have a training set, the reference distribution, and a test set. The approach is flexible and relies on a robust and powerful test statistic, the weighted AUC. Technical details are in Kamulete, V. M. (2021) <arXiv:1908.04000>. Modern notions of outlyingness such as trust scores and prediction uncertainty can be used as the underlying scores for example.
Fit logistic functions to observed dose-response continuous data and evaluate goodness-of-fit measures. See Malyutina A., Tang J., and Pessia A. (2023) <doi:10.18637/jss.v106.i04>.
This package performs Bayesian model averaging for capture-recapture. This includes code to stratify records, check the strata for suitable overlap to be used for capture-recapture, and some functions to plot the estimated population size.
This package provides a distributed framework for simulating and estimating skew factor models under various skewed and heavy-tailed distributions. The methods support distributed data generation, aggregation of local estimators, and evaluation of estimation performance via mean squared error, relative error, and sparsity measures. The distributed principal component (PC) estimators implemented in the package include IPC (Independent Principal Component),'PPC (Project Principal Component), SPC (Sparse Principal Component), and other related distributed PC methods. The methodological background follows Guo G. (2023) <doi:10.1007/s00180-022-01270-z>.
This package provides functions designed to connect disease-related differential proteins and co-expression network. It provides the basic statics analysis included t test, ANOVA analysis. The network construction is not offered by the package, you can used WGCNA package which you can learn in Peter et al. (2008) <doi:10.1186/1471-2105-9-559>. It also provides module analysis included PCA analysis, two enrichment analysis, Planner maximally filtered graph extraction and hub analysis.
Various functions to import, verify, process and plot high-resolution dendrometer data using daily and stem-cycle approaches as described in Deslauriers et al, 2007 <doi:10.1016/j.dendro.2007.05.003>. For more details about the package please see: Van der Maaten et al. 2016 <doi:10.1016/j.dendro.2016.06.001>.
For an observational study with binary treatment, binary outcome and K strata, implements a d-statistic that uses those strata most insensitive to unmeasured bias in treatment assignment.<doi:10.1093/biomet/asaa032> The package has one function, dstat2x2xk.
This package provides tools for constructing, manipulating and using distance metrics.
Package including an interactive Shiny application for plotting common univariate distributions.
This package provides a tool for manipulating data using the generic formula. A single formula allows to easily add, replace and remove variables before running the analysis.
Solving large scale distance weighted discrimination. The main algorithm is a symmetric Gauss-Seidel based alternating direction method of multipliers (ADMM) method. See Lam, X.Y., Marron, J.S., Sun, D.F., and Toh, K.C. (2018) <doi:10.48550/arXiv.1604.05473> for more details.
Written to help undergraduate as well as graduate students to get started with R for basic econometrics without the need to import specific functions and datasets from many different sources. Primarily, the package is meant to accompany the German textbook Auer, L.v., Hoffmann, S., Kranz, T. (2024, ISBN: 978-3-662-68263-0) from which the exercises cover all the topics from the textbook Auer, L.v. (2023, ISBN: 978-3-658-42699-6).
Estimation and testing methods for dependently truncated data. Semi-parametric methods are based on Emura et al. (2011)<Stat Sinica 21:349-67>, Emura & Wang (2012)<doi:10.1016/j.jmva.2012.03.012>, and Emura & Murotani (2015)<doi:10.1007/s11749-015-0432-8>. Parametric approaches are based on Emura & Konno (2012)<doi:10.1007/s00362-014-0626-2> and Emura & Pan (2017)<doi:10.1007/s00362-017-0947-z>. A regression approach is based on Emura & Wang (2016)<doi:10.1007/s10463-015-0526-9>. Quasi-independence tests are based on Emura & Wang (2010)<doi:10.1016/j.jmva.2009.07.006>. Right-truncated data for Japanese male centenarians are given by Emura & Murotani (2015)<doi:10.1007/s11749-015-0432-8>.
Data sets and functions, for the display of gene expression array (microarray) data, and for demonstrations with such data.
Dynamic treatment regime estimation and inference via G-estimation, dynamic weighted ordinary least squares (dWOLS) and Q-learning. Inference via bootstrap and recursive sandwich estimation. Estimation and inference for survival outcomes via Dynamic Weighted Survival Modeling (DWSurv). Extension to continuous treatment variables. Wallace et al. (2017) <DOI:10.18637/jss.v080.i02>; Simoneau et al. (2020) <DOI:10.1080/00949655.2020.1793341>.
Concept drift refers to the change in the data distribution or in the relationships between variables over time. drifter calculates distances between variable distributions or variable relations and identifies both types of drift. Key functions are: calculate_covariate_drift() checks distance between corresponding variables in two datasets, calculate_residuals_drift() checks distance between residual distributions for two models, calculate_model_drift() checks distance between partial dependency profiles for two models, check_drift() executes all checks against drift. drifter is a part of the DrWhy.AI universe (Biecek 2018) <arXiv:1806.08915>.
This package provides a set of tools to generate dynamic spectrogram visualizations in video format.