Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Integrates clipboard copied data in R Studio, loads and installs libraries within a R script and returns all valid arguments of a selected function.
This package provides function to estimate multiple change points using marginal likelihood method. See the Manual file in data folder for a detailed description of all functions, and a walk through tutorial. For more information of the method, please see Du, Kao and Kou (2016) <doi:10.1080/01621459.2015.1006365>.
This package provides a system that computes metrics to assess the segmentation accuracy of geospatial data. These metrics calculate the discrepancy between segmented and reference objects, and indicate the segmentation accuracy. For more details on choosing evaluation metrics, we suggest seeing Costa et al. (2018) <doi:10.1016/j.rse.2017.11.024> and Jozdani et al. (2020) <doi:10.1016/j.isprsjprs.2020.01.002>.
This package provides methods for statistical disclosure control in tabular data such as primary and secondary cell suppression as described for example in Hundepol et al. (2012) <doi:10.1002/9781118348239> are covered in this package.
This package provides tools to simulate and analyze survival data with interval-, left-, right-, and uncensored observations under common parametric distributions, including "Weibull", "Exponential", "Log-Normal", "Log-Logistic", "Gamma", "Gompertz", "Normal", "Logistic", and "EMV". The package supports both direct maximum likelihood estimation and imputation-based methods, making it suitable for methodological research, simulation benchmarking, and teaching. A web-based companion app is also available for demonstration purposes.
Execute the self-controlled case series (SCCS) design using observational data in the OMOP Common Data Model. Extracts all necessary data from the database and transforms it to the format required for SCCS. Age and season can be modeled using splines assuming constant hazard within calendar months. Event-dependent censoring of the observation period can be corrected for. Many exposures can be included at once (MSCCS), with regularization on all coefficients except for the exposure of interest. Includes diagnostics for all major assumptions of the SCCS.
Stochastic dominance tests help ranking different distributions. The package implements the consistent test for stochastic dominance by Barrett and Donald (2003) <doi:10.1111/1468-0262.00390>. Specifically, it implements Barrett and Donald's Kolmogorov-Smirnov type tests for first- and second-order stochastic dominance based on bootstrapping 2 and 1.
Automates the creation of Dockerfiles for deploying Shiny applications. By integrating with renv for dependency management and leveraging Docker-based solutions, it simplifies the process of containerizing Shiny apps, ensuring reproducibility and consistency across different environments. Additionally, it facilitates the setup of CI/CD pipelines for building Docker images on both GitLab and GitHub.
This package provides tools for smoothing and tidying spatial features (i.e. lines and polygons) to make them more aesthetically pleasing. Smooth curves, fill holes, and remove small fragments from lines and polygons.
This package provides an implementation of the Sparse ICA method in Wang et al. (2024) <doi:10.1080/01621459.2024.2370593> for estimating sparse independent source components of cortical surface functional MRI data, by addressing a non-smooth, non-convex optimization problem through the relax-and-split framework. This method effectively balances statistical independence and sparsity while maintaining computational efficiency.
Transformation of sea currents to connectivity data. Two files of horizontal and vertical currents flows are transformed into connectivity data in the form of sfnetwork', shapefile, edge list and adjacency matrix. An application example is shown at Nagkoulis et al. (2025) <doi:10.1016/j.dib.2024.111268>.
This package implements the basic elements of the multi-model inference paradigm for up to twenty species-area relationship models (SAR), using simple R list-objects and functions, as in Triantis et al. 2012 <DOI:10.1111/j.1365-2699.2011.02652.x>. The package is scalable and users can easily create their own model and data objects. Additional SAR related functions are provided.
Statistical analysis of spatio-temporal point processes on linear networks. This packages provides tools to visualise and analyse spatio-temporal point patterns on linear networks using first, second, and higher-order summary statistics.
Contains, as a main contribution, a function to fit a regression model with possibly right, left or interval censored observations and with the error distribution expressed as a mixture of G-splines. Core part of the computation is done in compiled C++ written using the Scythe Statistical Library Version 0.3.
Interface to sigma.js graph visualization library including animations, plugins and shiny proxies.
Simulation tools to evaluate the long-term effects of salmon management strategies, including a combination of habitat, harvest, and habitat actions. The stochastic age-structured operating model accommodates complex life histories, including freshwater survival across early life stages, juvenile survival and fishery exploitation in the marine life stage, partial maturity by age class, and fitness impacts of hatchery programs on natural spawning populations. salmonMSE also provides an age-structured conditioning model to develop operating models fitted to data.
This package provides a method that inherits the standard gene set variation analysis (GSVA) method and also provides the option to use summary statistics from any analysis (disease vs healthy, lesional side vs nonlesional side, etc..) input to define the direction of gene sets used for directional gene set score calculation for a given disease. Note to use this package, GSVA(>= 1.52.1) is needed to pre-installed. Hanzelmann, S., Castelo, R., and Guinney, J. (2013) <doi:10.1186/1471-2105-14-7>.
This package provides a small collection of data on graduate statistics programs from the United States.
This package provides an efficient framework for high-dimensional linear and diagonal discriminant analysis with variable selection. The classifier is trained using James-Stein-type shrinkage estimators and predictor variables are ranked using correlation-adjusted t-scores (CAT scores). Variable selection error is controlled using false non-discovery rates or higher criticism.
This package provides an R interface for SSW (Striped Smith-Waterman) via its Python binding ssw-py'. SSW is a fast C and C++ implementation of the Smith-Waterman algorithm for pairwise sequence alignment using Single-Instruction-Multiple-Data (SIMD) instructions. SSW enhances the standard algorithm by efficiently returning alignment information and suboptimal alignment scores. The core SSW library offers performance improvements for various bioinformatics tasks, including protein database searches, short-read alignments, primary and split-read mapping, structural variant detection, and read-overlap graph generation. These features make SSW particularly useful for genomic applications. Zhao et al. (2013) <doi:10.1371/journal.pone.0082138> developed the original C and C++ implementation.
An implementation of Simultaneous Truth and Performance Level Estimation (STAPLE) <doi:10.1109/TMI.2004.828354>. This method is used when there are multiple raters for an object, typically an image, and this method fuses these ratings into one rating. It uses an expectation-maximization method to estimate this rating and the individual specificity/sensitivity for each rater.
Seamlessly create interactive online catalogues for geospatial data. Items can be mapped as points or areas and retrieved using either a map or a dynamic table with search form and optional column filters.
This package provides a collection of functions for sensitivity analysis of model outputs (factor screening, global sensitivity analysis and robustness analysis), for variable importance measures of data, as well as for interpretability of machine learning models. Most of the functions have to be applied on scalar output, but several functions support multi-dimensional outputs.
This package provides a critical first step in systematic literature reviews and mining of academic texts is to identify relevant texts from a range of sources, particularly databases such as Web of Science or Scopus'. These databases often export in different formats or with different metadata tags. synthesisr expands on the tools outlined by Westgate (2019) <doi:10.1002/jrsm.1374> to import bibliographic data from a range of formats (such as bibtex', ris', or ciw') in a standard way, and allows merging and deduplication of the resulting dataset.