Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
The output gap indicates the percentage difference between the actual output of an economy and its potential. Since potential output is a latent process, the estimation of the output gap poses a challenge and numerous filtering techniques have been proposed. RGAP facilitates the estimation of a Cobb-Douglas production function type output gap, as suggested by the European Commission (Havik et al. 2014) <https://ideas.repec.org/p/euf/ecopap/0535.html>. To that end, the non-accelerating wage rate of unemployment (NAWRU) and the trend of total factor productivity (TFP) can be estimated in two bivariate unobserved component models by means of Kalman filtering and smoothing. RGAP features a flexible modeling framework for the appropriate state-space models and offers frequentist as well as Bayesian estimation techniques. Additional functionalities include direct access to the AMECO <https://economy-finance.ec.europa.eu/economic-research-and-databases/economic-databases/ameco-database_en> database and automated model selection procedures. See the paper by Streicher (2022) <http://hdl.handle.net/20.500.11850/552089> for details.
Makes it easy to produce everyday ggplot2 charts in a functional way without an extensive "tree" implementation. The package includes over 15 functions for the production and arrangement of basic graphing.
This package performs exact rate ratio tests.
This package provides environment modules functionality, which enables use of the Environment Modules system (<http://modules.sourceforge.net/>) from within the R environment. By default the user's login shell environment (ie. "bash -l") will be used to initialize the current session. The module function can also; load or unload specific software, list all the loaded software within the current session, and list all the applications available for loading from the module system. Lastly, the module function can remove all loaded software from the current session.
The regression discontinuity (RD) design is a popular quasi-experimental design for causal inference and policy evaluation. The rdmulti package provides tools to analyze RD designs with multiple cutoffs or scores: rdmc() estimates pooled and cutoff specific effects for multi-cutoff designs, rdmcplot() draws RD plots for multi-cutoff designs and rdms() estimates effects in cumulative cutoffs or multi-score designs. See Cattaneo, Titiunik and Vazquez-Bare (2020) <https://rdpackages.github.io/references/Cattaneo-Titiunik-VazquezBare_2020_Stata.pdf> for further methodological details.
Inspired by the classic RSA', we developed the improved Generalized Reporter Score-based Analysis (GRSA) method, implemented in the R package ReporterScore', along with comprehensive visualization methods and pathway databases. GRSA is a threshold-free method that works well with all types of biomedical features, such as genes, chemical compounds, and microbial species. Importantly, the GRSA supports multi-group and longitudinal experimental designs, because of the included multi-group-compatible statistical methods.
This package implements the Representation-Level Control Surfaces (RLCS) paradigm for ensuring the reliability of autonomous systems and AI models. It provides three deterministic sensors: Residual Likelihood (ResLik) for population-level anomaly detection, Temporal Consistency Sensor (TCS) for drift and shock detection, and Agreement Sensor for multi-modal redundancy checks. These sensors feed into a standardized control surface that issues PROCEED', DEFER', or ABSTAIN signals based on strict safety invariants, allowing systems to detect and react to out-of-distribution states, sensor failures, and environmental shifts before they propagate to decision-making layers.
Make your phrase or sentence into something funny! Pass a string with the keywords in, and get out a bit of humor.
Downloading, customizing, and processing time series of satellite images for a region of interest. rsat functions allow a unified access to multispectral images from Landsat, MODIS and Sentinel repositories. rsat also offers capabilities for customizing satellite images, such as tile mosaicking, image cropping and new variables computation. Finally, rsat covers the processing, including cloud masking, compositing and gap-filling/smoothing time series of images (Militino et al., 2018 <doi:10.3390/rs10030398> and Militino et al., 2019 <doi:10.1109/TGRS.2019.2904193>).
Functionality to download stock prices, cryptocurrency data, and more from the Tiingo API <https://api.tiingo.com/>.
This package provides functions for radiation safety, also known as "radiation protection" and "radiological control". The science of radiation protection is called "health physics" and its engineering functions are called "radiological engineering". Functions in this package cover many of the computations needed by radiation safety professionals. Examples include: obtaining updated calibration and source check values for radiation monitors to account for radioactive decay in a reference source, simulating instrument readings to better understand measurement uncertainty, correcting instrument readings for geometry and ambient atmospheric conditions. Many of these functions are described in Johnson and Kirby (2011, ISBN-13: 978-1609134198). Utilities are also included for developing inputs and processing outputs with radiation transport codes, such as MCNP, a general-purpose Monte Carlo N-Particle code that can be used for neutron, photon, electron, or coupled neutron/photon/electron transport (Werner et. al. (2018) <doi:10.2172/1419730>).
The Coinbase Advanced Trade API <https://docs.cdp.coinbase.com/api-reference/advanced-trade-api/rest-api/introduction> lets you manage orders, portfolios, products, and fees with the new v3 endpoints.
Data for the vignette and examples in RFlocalfdr'. Contains a dataset of 1103547 importance values, and the table of variables used in the random forest splits. The data is Chromosome 22 taken from Auton et al. (2015) <doi:10.1038/nature15393>. It also contains a 51 samples by 22283 genes data set taken from Spira et al. (2004) <doi:10.1165/rcmb.2004-0273OC>.
R interface to DSDP semidefinite programming library. The DSDP software is a free open source implementation of an interior-point method for semidefinite programming. It provides primal and dual solutions, exploits low-rank structure and sparsity in the data, and has relatively low memory requirements for an interior-point method.
Duplicated restaurant data (pre-processed and formatted) for entity resolution. This package contains formatted data from a data set that contains information about different restaurants, with the Zagats portion containing 331 records and the Fodors portion containing 533 records. The following variables are included in the data set: id, name, address, city, phone, type. The data set has a respective gold data set that provides information on which records match based on id.
To incorporate neighbor genotypic identity into genome-wide association studies, the package provides a set of functions for variation partitioning and association mapping. The theoretical background of the method is described in Sato et al. (2021) <doi:10.1038/s41437-020-00401-w>.
Datasets and utility functions to support the book "R for Plant Disease Epidemiology" (R4PDE). It includes functions for quantifying disease, assessing spatial patterns, and modeling plant disease epidemics based on weather predictors. These tools are intended for teaching and research in plant disease epidemiology. Several functions are based on classical and contemporary methods, including those discussed in Laurence V. Madden, Gareth Hughes, and Frank van den Bosch (2007) <doi:10.1094/9780890545058>.
This package provides a RESTful API wrapper for accessing the GENESIS database of the German Federal Statistical Office (Destatis) as well as its Census Database and the database of Germany's regional statistics. Supports data search functions, credential management, result caching, and handling remote background jobs for large datasets.
The cnpy library written by Carl Rogers provides read and write facilities for files created with (or for) the NumPy extension for Python'. Vectors and matrices of numeric types can be read or written to and from files as well as compressed files. Support for integer files is available if the package has been built with as C++11 which should be the default on all platforms since the release of R 3.3.0.
Regression methods to quantify the relation between two measurement methods are provided by this package. The focus is on a Bayesian Deming regressions family. With a Bayesian method the Deming regression can be run in a traditional fashion or can be run in a robust way just decreasing the degree of freedom d.f. of the sampling distribution. With d.f. = 1 an extremely robust Cauchy distribution can be sampled. Moreover, models for dealing with heteroscedastic data are also provided. For reference see G. Pioda (2024) <https://piodag.github.io/bd1/>.
Companion package for the book: "Robust Statistics: Theory and Methods, second edition", <http://www.wiley.com/go/maronna/robust>. This package contains code that implements the robust estimators discussed in the recent second edition of the book above, as well as the scripts reproducing all the examples in the book.
This package provides wrappers around base::grep() where the first argument is standardized to take the data object. This makes it less of a pain to use regular expressions with magrittr or other pipe operators.
Utilities for sparse signal recovery suitable for compressed sensing. L1, L2 and TV penalties, DFT basis matrix, simple sparse signal generator, mutual cumulative coherence between two matrices and examples, Lp complex norm, scaling back regression coefficients.
Examples for Seamless R and C++ integration The Rcpp package contains a C++ library that facilitates the integration of R and C++ in various ways. This package provides some usage examples. Note that the documentation in this package currently does not cover all the features in the package. The site <https://gallery.rcpp.org> regroups a large number of examples for Rcpp'.