Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides a collection of functions for calculating the M2 model fit statistic for diagnostic classification models as described by Liu et al. (2016) <DOI:10.3102/1076998615621293>. These functions provide multiple sources of information for model fit according to the M2 statistic, including the M2 statistic, the *p* value for that M2 statistic, and the Root Mean Square Error of Approximation based on the M2 statistic.
Create shareable data sets from raw data files that contain protected elements. Relying on master crosswalk files that list restricted variables, package functions warn users about possible violations of data usage agreement and prevent writing protected elements.
This package provides a decorator is a function that receives a function, extends its behaviour, and returned the altered function. Any caller that uses the decorated function uses the same interface as it were the original, undecorated function. Decorators serve two primary uses: (1) Enhancing the response of a function as it sends data to a second component; (2) Supporting multiple optional behaviours. An example of the first use is a timer decorator that runs a function, outputs its execution time on the console, and returns the original function's result. An example of the second use is input type validation decorator that during running time tests whether the caller has passed input arguments of a particular class. Decorators can reduce execution time, say by memoization, or reduce bugs by adding defensive programming routines.
This package provides functions and data sets used in examples and exercises in the text Maindonald, J.H. and Braun, W.J. (2003, 2007, 2010) "Data Analysis and Graphics Using R", and in an upcoming Maindonald, Braun, and Andrews text that builds on this earlier text.
Mechanisms to parallelize dependent tasks in a manner that optimizes the compute resources available. It provides access to "delayed" computations, which may be parallelized using futures. It is, to an extent, a facsimile of the Dask library (<https://www.dask.org/>), for the Python language.
Create high-performance clinical reporting tables (TLGs) from ADaM-like inputs. The package provides a consistent, programmatic API to generate common tables such as demographics, adverse event incidence, and laboratory summaries, using data.table for fast aggregation over large populations. Functions support flexible target-variable selection, stratification by treatment, and customizable summary statistics, and return tidy, machine-readable results ready to render with downstream table/formatting packages in analysis pipelines.
This package contains the normalizing and variance stabilizing Data-Driven Haar-Fisz algorithm. Also contains related algorithms for simulating from certain microarray gene intensity models and evaluation of certain transformations. Contains cDNA and shipping credit flow data.
Facilitates the analysis of SNP (single nucleotide polymorphism) and silicodart (presence/absence) data. dartR.popgen provides a suit of functions to analyse such data in a population genetics context. It provides several functions to calculate population genetic metrics and to study population structure. Quite a few functions need additional software to be able to run (gl.run.structure(), gl.blast(), gl.LDNe()). You find detailed description in the help pages how to download and link the packages so the function can run the software. dartR.popgen is part of the the dartRverse suit of packages. Gruber et al. (2018) <doi:10.1111/1755-0998.12745>. Mijangos et al. (2022) <doi:10.1111/2041-210X.13918>.
This package implements Meng's data defect index (ddi), which represents the degree of sample bias relative to an iid sample. The data defect correlation (ddc) represents the correlation between the outcome of interest and the selection into the sample; when the sample selection is independent across the population, the ddc is zero. Details are in Meng (2018) <doi:10.1214/18-AOAS1161SF>, "Statistical Paradises and Paradoxes in Big Data (I): Law of Large Populations, Big Data Paradox, and the 2016 US Presidential Election." Survey estimates from the Cooperative Congressional Election Study (CCES) is included to replicate the article's results.
Implementation of selected Tidyverse functions within DataSHIELD', an open-source federated analysis solution in R. Currently, DataSHIELD contains very limited tools for data manipulation, so the aim of this package is to improve the researcher experience by implementing essential functions for data manipulation, including subsetting, filtering, grouping, and renaming variables. This is the serverside package which should be installed on the server holding the data, and is used in conjuncture with the clientside package dsTidyverseClient which is installed in the local R environment of the analyst. For more information, see <https://tidyverse.org/> and <https://datashield.org/>.
Decorrelates a set of summary statistics (i.e., Z-scores or P-values per SNP) via Decorrelation by Orthogonal Transformation (DOT) approach and performs gene-set analyses by combining transformed statistic values; operations are performed with algorithms that rely only on the association summary results and the linkage disequilibrium (LD). For more details on DOT and its power, see Olga (2020) <doi:10.1371/journal.pcbi.1007819>.
This package provides a collection of functions to perform Detrended Fluctuation Analysis (DFA) and Detrended Cross-Correlation Analysis (DCCA). This package implements the results presented in Prass, T.S. and Pumi, G. (2019). "On the behavior of the DFA and DCCA in trend-stationary processes" <arXiv:1910.10589>.
Dynamic stochastic block model that combines a stochastic block model (SBM) for its static part with independent Markov chains for the evolution of the nodes groups through time, developed in Matias and Miele (2016) <doi:10.1111/rssb.12200>.
Modeling the zero coupon yield curve using the dynamic De Rezende and Ferreira (2011) <doi:10.1002/for.1256> five factor model with variable or fixed decaying parameters. For explanatory purposes, the package also includes various short datasets of interest rates for the BRICS countries.
The load estimation method is based on a general factor model to solve the estimates of load and specific variance. The philosophy of the package is described in Guangbao Guo. (2022). <doi:10.1007/s00180-022-01270-z>.
This package provides a collection of functions which aim to assist common computational workflow for analysis of matabolomic data..
Dynamic treatment regime estimation and inference via G-estimation, dynamic weighted ordinary least squares (dWOLS) and Q-learning. Inference via bootstrap and recursive sandwich estimation. Estimation and inference for survival outcomes via Dynamic Weighted Survival Modeling (DWSurv). Extension to continuous treatment variables. Wallace et al. (2017) <DOI:10.18637/jss.v080.i02>; Simoneau et al. (2020) <DOI:10.1080/00949655.2020.1793341>.
Tool to print out the value of R objects/expressions while running an R script. Outputs can be made dependent on user-defined conditions/criteria. Debug messages only appear when a global option for debugging is set. This way, debugr code can even remain in the debugged code for later use without any negative effects during normal runtime.
Compare detrital zircon suites by uploading univariate, U-Pb age, or bivariate, U-Pb age and Lu-Hf data, in a shiny'-based user-interface. Outputs publication quality figures using ggplot2', and tables of statistics currently in use in the detrital zircon geochronology community.
This package contains a function called dmur() which accepts four parameters like possible values, probabilities of the values, selling cost and preparation cost. The dmur() function generates various numeric decision parameters like MEMV (Maximum (optimum) expected monitory value), best choice, EPPI (Expected profit with perfect information), EVPI (Expected value of the perfect information), EOL (Expected opportunity loss), which facilitate effective decision-making.
Dynamic path analysis with estimation of the corresponding direct, indirect, and total effects, based on Fosen et al., (2006) <doi:10.1007/s10985-006-9004-2>. The main outcome of interest is a counting process from survival analysis (or recurrent events) data. At each time of event, ordinary linear regression is used to estimate the relation between the covariates, while Aalen's additive hazard model is used for the regression of the counting process on the covariates.
This package provides a convenient API interface to access immunological data within the CAVD DataSpace'(<https://dataspace.cavd.org>), a data sharing and discovery tool that facilitates exploration of HIV immunological data from pre-clinical and clinical HIV vaccine studies.
An integrated toolset for the analysis of de novo (sporadic) genetic sequence variants. denovolyzeR implements a mutational model that estimates the probability of a de novo genetic variant arising in each human gene, from which one can infer the expected number of de novo variants in a given population size. Observed variant frequencies can then be compared against expectation in a Poisson framework. denovolyzeR provides a suite of functions to implement these analyses for the interpretation of de novo variation in human disease.
An R implementation and enhancement of the Dynamic TOPMODEL semi-distributed hydrological model originally proposed by Beven and Freer (2001) <doi:10.1002/hyp.252>. The dynatop package implements code for simulating models which can be created using the dynatopGIS package.