Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Providing a cluster allocation for n samples, either with an $n \times p$ data matrix or an $n \times n$ distance matrix, a bootstrap procedure is performed. The proportion of bootstrap replicates where a pair of samples cluster in the same cluster indicates who tightly the samples in a particular cluster clusters together.
The design of this package allows us to run different clustering packages and compare the results between them, to determine which algorithm behaves best from the data provided. See Martos, L.A.P., Garcà a-Vico, à .M., González, P. et al.(2023) <doi:10.1007/s13748-022-00294-2> "Clustering: an R library to facilitate the analysis and comparison of cluster algorithms.", Martos, L.A.P., Garcà a-Vico, à .M., González, P. et al. "A Multiclustering Evolutionary Hyperrectangle-Based Algorithm" <doi:10.1007/s44196-023-00341-3> and L.A.P., Garcà a-Vico, à .M., González, P. et al. "An Evolutionary Fuzzy System for Multiclustering in Data Streaming" <doi:10.1016/j.procs.2023.12.058>.
Collection of routines for efficient scientific computations in physics and astrophysics. These routines include utility functions, numerical computation tools, as well as visualisation tools. They can be used, for example, for generating random numbers from spherical and custom distributions, information and entropy analysis, special Fourier transforms, two-point correlation estimation (e.g. as in Landy & Szalay (1993) <doi:10.1086/172900>), binning & gridding of point sets, 2D interpolation, Monte Carlo integration, vector arithmetic and coordinate transformations. Also included is a non-exhaustive list of important constants and cosmological conversion functions. The graphics routines can be used to produce and export publication-ready scientific plots and movies, e.g. as used in Obreschkow et al. (2020, MNRAS Vol 493, Issue 3, Pages 4551â 4569). These routines include special color scales, projection functions, and bitmap handling routines.
Computes the density and probability for the conditional truncated multivariate normal (Horrace (2005) p. 4, <doi:10.1016/j.jmva.2004.10.007>). Also draws random samples from this distribution.
This package provides access to consolidated information from the Brazilian Federal Government Payment Card. Includes functions to retrieve, clean, and organize data directly from the Transparency Portal <https://portaldatransparencia.gov.br/download-de-dados/cpgf/> and a curated dataset hosted on the Open Science Framework <https://osf.io/z2mxc/>. Useful for public spending analysis, transparency research, and reproducible workflows in auditing or investigative journalism.
Calculates the dutch air quality index (LKI). This index was created on the basis of scientific studies of the health effects of air pollution. From these studies it can be deduced at what concentrations a certain percentage of the population can be affected. For more information see: <https://www.rivm.nl/bibliotheek/rapporten/2014-0050.pdf>.
Parameter estimation of regression models with fixed group effects, when the group variable is missing while group-related variables are available. Parametric and semi-parametric approaches described in Marbac et al. (2020) <arXiv:2012.14159> are implemented.
This package provides functions for constructing simultaneous credible bands and identifying subsets via the "credible subsets" (also called "credible subgroups") method. Package documentation includes the vignette included in this package, and the paper by Schnell, Fiecas, and Carlin (2020, <doi:10.18637/jss.v094.i07>).
This package provides a wrapper for the Clockify API <https://docs.clockify.me/>, making it possible to query, insert and update time keeping data.
This package implements methods for querying data from CalPASS using its API. CalPASS Plus. MMAP API V1. <https://mmap.calpassplus.org/docs/index.html>.
Integrative context-dependent clustering for heterogeneous biomedical datasets. Identifies local clustering structures in related datasets, and a global clusters that exist across the datasets.
The ConNEcT approach investigates the pairwise association strength of binary time series by calculating contingency measures and depicts the results in a network. The package includes features to explore and visualize the data. To calculate the pairwise concurrent or temporal sequenced relationship between the variables, the package provides seven contingency measures (proportion of agreement, classical & corrected Jaccard, Cohen's kappa, phi correlation coefficient, odds ratio, and log odds ratio), however, others can easily be implemented. The package also includes non-parametric significance tests, that can be applied to test whether the contingency value quantifying the relationship between the variables is significantly higher than chance level. Most importantly this test accounts for auto-dependence and relative frequency.See Bodner et al.(2021) <doi: 10.1111/bmsp.12222>.Finally, a network can be drawn. Variables depicted the nodes of the network, with the node size adapted to the prevalence. The association strength between the variables defines the undirected (concurrent) or directed (temporal sequenced) links between the nodes. The results of the non-parametric significance test can be included by depicting either all links or only the significant ones. Tutorial see Bodner et al.(2021) <doi:10.3758/s13428-021-01760-w>.
Calculates and visualises cumulative percent decay curves, which are typically calculated from metagenomic taxonomic profiles. These can be used to estimate the level of expected endogenous taxa at different abundance levels retrieved from metagenomic samples, when comparing to samples of known sampling site or source. Method described in Fellows Yates, J. A. et. al. (2021) Proceedings of the National Academy of Sciences USA <doi:10.1073/pnas.2021655118>.
The Codemeta Project defines a JSON-LD format for describing software metadata, as detailed at <https://codemeta.github.io>. This package provides core utilities to generate this metadata with a minimum of dependencies.
This package provides a set of common functions to be used for displaying messages, checking variables, finding absolute paths, starting applications, etc. More functions will be added later.
This package provides a simple set of classes and methods for mapping between scalar intensity values and colors. There is also support for layering maps on top of one another using alpha composition.
Cross-validate one or multiple regression and classification models and get relevant evaluation metrics in a tidy format. Validate the best model on a test set and compare it to a baseline evaluation. Alternatively, evaluate predictions from an external model. Currently supports regression and classification (binary and multiclass). Described in chp. 5 of Jeyaraman, B. P., Olsen, L. R., & Wambugu M. (2019, ISBN: 9781838550134).
This package provides an extension to the purrr family of mapping functions to apply a function to each combination of elements in a list of inputs. Also includes functions for automatically detecting output type in mapping functions, finding every combination of elements of lists or rows of data frames, and applying multiple models to multiple subsets of a dataset.
Computation of Multiscale Codependence Analysis and spatial eigenvector maps.
This package provides a wrapper around the new cleaner package, that allows data cleaning functions for classes logical', factor', numeric', character', currency and Date to make data cleaning fast and easy. Relying on very few dependencies, it provides smart guessing, but with user options to override anything if needed.
This package provides a standardized and reproducible framework for characterizing and classifying discrete color classes from digital images of biological organisms. The package automatically determines the presence or absence of 10 human-visible color categories (black, blue, brown, green, grey, orange, purple, red, white, yellow) using a biologically-inspired Color Look-Up Table (CLUT) that partitions HSV color space. Supports both fully automated and semi-automated (interactive) workflows with complete provenance tracking for reproducibility. Pre-processes images using the recolorize package (Weller et al. 2024 <doi:10.1111/ele.14378>) for spatial-color binning, and integrates with pavo (Maia et al. 2019 <doi:10.1111/2041-210X.13174>) for color pattern geometry statistics. Designed for high-throughput analysis and seamless integration with downstream evolutionary analyses.
In randomized controlled trial (RCT), balancing covariate is often one of the most important concern. CARM package provides functions to balance the covariates and generate allocation sequence by covariate-adjusted Adaptive Randomization via Mahalanobis-distance (ARM) for RCT. About what ARM is and how it works please see Y. Qin, Y. Li, W. Ma, H. Yang, and F. Hu (2024). "Adaptive randomization via Mahalanobis distance" Statistica Sinica. <doi:10.5705/ss.202020.0440>. In addition, the package is also suitable for the randomization process of multi-arm trials. For details, please see Yang H, Qin Y, Wang F, et al. (2023). "Balancing covariates in multi-arm trials via adaptive randomization" Computational Statistics & Data Analysis.<doi:10.1016/j.csda.2022.107642>.
Easily create color-coded (choropleth) maps in R. No knowledge of cartography or shapefiles needed; go directly from your geographically identified data to a highly customizable map with a single line of code! Supported geographies: U.S. states, counties, census tracts, and zip codes, world countries and sub-country regions (e.g., provinces, prefectures, etc.).
This package provides comprehensive functionalities for causal modeling with Coincidence Analysis (CNA), which is a configurational comparative method of causal data analysis that was first introduced in Baumgartner (2009) <doi:10.1177/0049124109339369>, and generalized in Baumgartner & Ambuehl (2020) <doi:10.1017/psrm.2018.45>. CNA is designed to recover INUS-causation from data, which is particularly relevant for analyzing processes featuring conjunctural causation (component causation) and equifinality (alternative causation). CNA is currently the only method for INUS-discovery that allows for multiple effects (outcomes/endogenous factors), meaning it can analyze common-cause and causal chain structures. Moreover, as of version 4.0, it is the only method of its kind that provides measures for model evaluation and selection that are custom-made for the problem of INUS-discovery.