Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package can do non-parametric bootstrap and permutation resampling-based multiple testing procedures (including empirical Bayes methods) for controlling the family-wise error rate (FWER), generalized family-wise error rate (gFWER), tail probability of the proportion of false positives (TPPFP), and false discovery rate (FDR). Several choices of bootstrap-based null distribution are implemented (centered, centered and scaled, quantile-transformed). Single-step and step-wise methods are available. Tests based on a variety of T- and F-statistics (including T-statistics based on regression parameters from linear and survival models as well as those based on correlation parameters) are included. When probing hypotheses with T-statistics, users may also select a potentially faster null distribution which is multivariate normal with mean zero and variance covariance matrix derived from the vector influence function. Results are reported in terms of adjusted P-values, confidence regions and test statistic cutoffs. The procedures are directly applicable to identifying differentially expressed genes in DNA microarray experiments.
Graphite provides networks derived from eight public pathway databases, and automates the conversion of node identifiers (e.g. from Entrez IDs to gene symbols).
The MassSpecWavelet package aims to process Mass Spectrometry (MS) data mainly through the use of wavelet transforms. It supports peak detection based on Continuous Wavelet Transform (CWT).
r-kegggraph is an interface between Kegg Pathway database and graph object as well as a collection of tools to analyze, dissect and visualize these graphs. It parses the regularly updated kgml (Kegg XML) files into graph models maintaining all essential pathway attributes. The package offers functionalities including parsing, graph operation, visualization and etc.
This package provides mappings from Entrez gene identifiers to various annotations for the genome of the model fruit fly Drosophila melanogaster.
This package was derived from Rsymphony. The package provides an R interface to SYMPHONY, a linear programming solver written in C++. The main difference between this package and Rsymphony is that it includes the solver source code, while Rsymphony expects to find header and library files on the users' system. Thus the intention of lpsymphony is to provide an easy to install interface to SYMPHONY.
This package is a visualization and analysis toolbox for short time course data which includes dimensionality reduction, clustering, two-sample differential expression testing and gene ranking techniques. The package also provides methods for retrieving enriched pathways.
Store minor allele frequency data from the Phase 1 of the 1000 Genomes Project for the human genome version hs37d5.
This package provides example datasets that represent 'real world examples' of Affymetrix data, unlike the artificial examples included in the package affy.
The semantic comparisons of Gene Ontology (GO) annotations provide quantitative ways to compute similarities between genes and gene groups, and have became important basis for many bioinformatics analysis approaches. GOSemSim is an R package for semantic similarity computation among GO terms, sets of GO terms, gene products and gene clusters.
The package ANF(Affinity Network Fusion) provides methods for affinity matrix construction and fusion as well as spectral clustering. This package is used for complex patient clustering by integrating multi-omic data through affinity network fusion.
Bayesian network analysis is a form of probabilistic graphical models which derives from empirical data a directed acyclic graph, DAG, describing the dependency structure between random variables. An additive Bayesian network model consists of a form of a DAG where each node comprises a generalized linear model (GLM). Additive Bayesian network models are equivalent to Bayesian multivariate regression using graphical modelling, they generalises the usual multivariable regression, GLM, to multiple dependent variables. This package provides routines to help determine optimal Bayesian network models for a given data set, where these models are used to identify statistical dependencies in messy, complex data.
This package provides basic utility functions for performing single-cell analyses, focusing on simple normalization, quality control and data transformations. It also provides some helper functions to assist development of other packages.
This package allows importing most common specific structure (motif) types into R for use by functions provided by other Bioconductor motif-related packages. Motifs can be exported into most major motif formats from various classes as defined by other Bioconductor packages. A suite of motif and sequence manipulation and analysis functions are included, including enrichment, comparison, P-value calculation, shuffling, trimming, higher-order motifs, and others.
This package contains genome-wide annotations for Human, primarily based on mapping using Entrez Gene identifiers.
This package provides tools to identify cell populations in Flow Cytometry data using non-parametric clustering and segmented-regression-based change point detection.
This package contains several tools for analyzing Sanger Sequencing data files in R, including reading .scf and .ab1 files, making basecalls and plotting chromatograms.
The purpose of this GO.db annotation package is to provide detailed information about the latest version of the Gene Ontologies.
This package lets you programmatically access the NIH/NCI Genomic Data Commons RESTful service.
systemPipeRdata complements the systemPipeR workflow management system (WMS) by offering a collection of pre-designed data analysis workflow templates. These templates are easily accessible and can be readily loaded onto a user's system with a single command. Once loaded, the WMS can immediately utilize these templates for efficient end-to-end analysis, serving a wide range of data analysis needs.
This software ADAM is a Gene set enrichment analysis (GSEA) package created to group a set of genes from comparative samples (control versus experiment) belonging to different species according to their respective functions. The corresponding roles are extracted from the default collections like Gene ontology and Kyoto encyclopedia of genes and genomes (KEGG). ADAM show their significance by calculating the p-values referring to gene diversity and activity. Each group of genes is called Group of functionally associated genes (GFAG).
In order to assess the quality of a set of predicted genes for a genome, evidence must first be mapped to that genome. Next, each gene must be categorized based on how strong the evidence is for or against that gene. The AssessORF package provides the functions and class structures necessary for accomplishing those tasks, using proteomics hits and evolutionarily conserved start codons as the forms of evidence.
This package provides a RangedSummarizedExperiment object of read counts in genes for an RNA-Seq experiment on four human airway smooth muscle cell lines treated with dexamethasone. Details on the gene model and read counting procedure are provided in the package vignette. The citation for the experiment is: Himes BE, Jiang X, Wagner P, Hu R, Wang Q, Klanderman B, Whitaker RM, Duan Q, Lasky-Su J, Nikolos C, Jester W, Johnson M, Panettieri R Jr, Tantisira KG, Weiss ST, Lu Q. RNA-Seq Transcriptome Profiling Identifies CRISPLD2 as a Glucocorticoid Responsive Gene that Modulates Cytokine Function in Airway Smooth Muscle Cells. PLoS One. 2014 Jun 13;9(6):e99625. PMID: 24926665. GEO: GSE52778.
This package provides a package for summary and annotation of genomic intervals. Users can visualize and quantify genomic intervals over pre-defined functional regions, such as promoters, exons, introns, etc. The genomic intervals represent regions with a defined chromosome position, which may be associated with a score, such as aligned reads from HT-seq experiments, TF binding sites, methylation scores, etc. The package can use any tabular genomic feature data as long as it has minimal information on the locations of genomic intervals. In addition, it can use BAM or BigWig files as input.