Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package performs a Gene Set Analysis with the approach adopted by PADOG on the genes that are reported as translationally regulated (ie. exhibit a significant change in TE) by the DeltaTE package. It can be used on its own to see the impact of translation regulation on gene sets, but it is also integrated as an additional analysis method within ReactomeGSA, where results are further contextualised in terms of pathways and directionality of the change.
Exposes an annotation databases generated from UCSC by exposing these as TxDb objects.
Exposes an annotation databases generated from UCSC by exposing these as TxDb objects.
Starting from one SBML file, it extracts information from each listOfCompartments, listOfSpecies and listOfReactions element by saving them into data frames. Each table provides one row for each entity (i.e. either compartment, species, reaction or speciesReference) and one set of columns for the attributes, one column for the content of the notes subelement and one set of columns for the content of the annotation subelement.
Quantitative and differential analysis of epigenomic and transcriptomic time course sequencing data, clustering analysis and visualization of the temporal patterns of time course data.
Precompiled and processed miRNA-overexpression fold-changes from 84 Gene Expression Omnibus (GEO) series corresponding to 6 platforms, 77 human cells or tissues, and 113 distinct miRNAs. Accompanied with the data, we also included in this package the sequence feature scores from TargetScanHuman 6.1 including the context+ score and the probabilities of conserved targeting for each miRNA-mRNA interaction. Thus, the user can use these static sequence-based scores together with user-supplied tissue/cell-specific fold-change due to miRNA overexpression to predict miRNA targets using the package TargetScore (download separately).
Exposes an annotation databases generated from UCSC by exposing these as TxDb objects.
transite is a computational method that allows comprehensive analysis of the regulatory role of RNA-binding proteins in various cellular processes by leveraging preexisting gene expression data and current knowledge of binding preferences of RNA-binding proteins.
Exposes an annotation databases generated from UCSC by exposing these as TxDb objects.
Single-cell RNA-seq data for 1.3 million brain cells from E18 mice, generated by 10X Genomics.
This package provides functions to standardise the analysis of Differential Allelic Representation (DAR). DAR compromises the integrity of Differential Expression analysis results as it can bias expression, influencing the classification of genes (or transcripts) as being differentially expressed. DAR analysis results in an easy-to-interpret value between 0 and 1 for each genetic feature of interest, where 0 represents identical allelic representation and 1 represents complete diversity. This metric can be used to identify features prone to false-positive calls in Differential Expression analysis, and can be leveraged with statistical methods to alleviate the impact of such artefacts on RNA-seq data.
Exposes an annotation databases generated from BioMart by exposing these as TxDb objects.
Exposes an annotation databases generated from UCSC by exposing these as TxDb objects.
Exposes an annotation databases generated from UCSC by exposing these as TxDb objects.
Exposes an annotation databases generated from UCSC by exposing these as TxDb objects.
This package provides methods to perform trajectory analysis based on a minimum spanning tree constructed from cluster centroids. Computes pseudotemporal cell orderings by mapping cells in each cluster (or new cells) to the closest edge in the tree. Uses linear modelling to identify differentially expressed genes along each path through the tree. Several plotting and interactive visualization functions are also implemented.
This package provides a series of functions for performing differential expression analysis from RNA-seq count data using robust normalization strategy (called DEGES). The basic idea of DEGES is that potential differentially expressed genes or transcripts (DEGs) among compared samples should be removed before data normalization to obtain a well-ranked gene list where true DEGs are top-ranked and non-DEGs are bottom ranked. This can be done by performing a multi-step normalization strategy (called DEGES for DEG elimination strategy). A major characteristic of TCC is to provide the robust normalization methods for several kinds of count data (two-group with or without replicates, multi-group/multi-factor, and so on) by virtue of the use of combinations of functions in depended packages.
Example data for the topdownr package generated on a Thermo Orbitrap Fusion Lumos MS device.
Exposes an annotation databases generated from UCSC by exposing these as TxDb objects.
TENET identifies key transcription factors (TFs) and regulatory elements (REs) linked to a specific cell type by finding significantly correlated differences in gene expression and RE DNA methylation between case and control input datasets, and identifying the top genes by number of significant RE DNA methylation site links. It also includes many tools for visualization and analysis of the results, including plots displaying and comparing methylation and expression data and methylation site link counts, survival analysis, TF motif searching in the vicinity of linked RE DNA methylation sites, custom TAD and peak overlap analysis, and UCSC Genome Browser track file generation. A utility function is also provided to download methylation, expression, and patient survival data from The Cancer Genome Atlas (TCGA) for use in TENET or other analyses.
R package for transcriptional analysis based on transcriptograms, a method to analyze transcriptomes that projects expression values on a set of ordered proteins, arranged such that the probability that gene products participate in the same metabolic pathway exponentially decreases with the increase of the distance between two proteins of the ordering. Transcriptograms are, hence, genome wide gene expression profiles that provide a global view for the cellular metabolism, while indicating gene sets whose expressions are altered.
This is a collection of utility functions that allow to perform exploration of and calculations to RNA sequencing data, in a modular, pipe-friendly and tidy fashion.
Collection of Visium spatial gene expression datasets by 10X Genomics, formatted into objects of class SpatialExperiment. Data cover various organisms and tissues, and include: single- and multi-section experiments, as well as single sections subjected to both whole transcriptome and targeted panel analysis. Datasets may be used for testing of and as examples in packages, for tutorials and workflow demonstrations, or similar purposes.
Single-cell RNA-seq data for on PBMC cells, generated by 10X Genomics.