Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides a user-friendly interface, using Shiny, to analyse glucose-stimulated insulin secretion (GSIS) assays in pancreatic beta cells or islets. The package allows the user to import several sets of experiments from different spreadsheets and to perform subsequent steps: summarise in a tidy format, visualise data quality and compare experimental conditions without omitting to account for technical confounders such as the date of the experiment or the technician. Together, insane is a comprehensive method that optimises pre-processing and analyses of GSIS experiments in a friendly-user interface. The Shiny App was initially designed for EndoC-betaH1 cell line following method described in Ndiaye et al., 2017 (<doi:10.1016/j.molmet.2017.03.011>).
Reproducible, programmatic retrieval of datasets from the Inter-university Consortium for Political and Social Research archive.
This package provides classes and functions for working with IP (Internet Protocol) addresses and networks, inspired by the Python ipaddress module. Offers full support for both IPv4 and IPv6 (Internet Protocol versions 4 and 6) address spaces. It is specifically designed to work well with the tidyverse'.
For different linear dimension reduction methods like principal components analysis (PCA), independent components analysis (ICA) and supervised linear dimension reduction tests and estimates for the number of interesting components (ICs) are provided.
This package provides a system for submitting multiple IP information queries to IP2Location.io'â s IP Geolocation API and storing the resulting data in a dataframe. You provide a vector of IP addresses and your IP2Location.io API key. The package returns a dataframe with one row per IP address and a column for each available data field (data fields not included in your API plan will contain NAs). This is the second submission of the package to CRAN.
This package provides tools for assessment and quantification of individual identity information in animal signals. This package accompanies a research article by Linhart et al. (2019) <doi:10.1101/546143>: "Measuring individual identity information in animal signals: Overview and performance of available identity metrics".
Facilitates spatial and general latent Gaussian modeling using integrated nested Laplace approximation via the INLA package (<https://www.r-inla.org>). Additionally, extends the GAM-like model class to more general nonlinear predictor expressions, and implements a log Gaussian Cox process likelihood for modeling univariate and spatial point processes based on ecological survey data. Model components are specified with general inputs and mapping methods to the latent variables, and the predictors are specified via general R expressions, with separate expressions for each observation likelihood model in multi-likelihood models. A prediction method based on fast Monte Carlo sampling allows posterior prediction of general expressions of the latent variables. Ecology-focused introduction in Bachl, Lindgren, Borchers, and Illian (2019) <doi:10.1111/2041-210X.13168>.
This package provides a tool to calculate the performance of a time series in a specific date or period. It is more intended for data analysis in the fields of finance, banking, telecommunications or operational marketing.
Call wrappers for Istanbul Metropolitan Municipality's Open Data Portal (Turkish: İstanbul BüyükŠehir Belediyesi Açık Veri Portalı) at <https://data.ibb.gov.tr/en/>.
This package provides a toolkit that allows scientists to work with data from single cell sequencing technologies such as scRNA-seq, scVDJ-seq, scATAC-seq, CITE-Seq and Spatial Transcriptomics (ST). Single (i) Cell R package ('iCellR') provides unprecedented flexibility at every step of the analysis pipeline, including normalization, clustering, dimensionality reduction, imputation, visualization, and so on. Users can design both unsupervised and supervised models to best suit their research. In addition, the toolkit provides 2D and 3D interactive visualizations, differential expression analysis, filters based on cells, genes and clusters, data merging, normalizing for dropouts, data imputation methods, correcting for batch differences, pathway analysis, tools to find marker genes for clusters and conditions, predict cell types and pseudotime analysis. See Khodadadi-Jamayran, et al (2020) <doi:10.1101/2020.05.05.078550> and Khodadadi-Jamayran, et al (2020) <doi:10.1101/2020.03.31.019109> for more details.
Collection of functions for quality control (QC) of climatological daily time series (e.g. the ECA&D station data).
Performing Item Response Theory analysis such as parameter estimation, ability estimation, data generation, item and model fit analyse, local independence assumption, dimensionality assumption, wright map, characteristic and information curves under various models with a user-friendly Graphic User Interface.
API wrapper that contains functions to retrieve data from the IsoMemo partnership databases. Web services for API: <https://isomemodb.com/api/v1/iso-data>.
Calculates irrigation water quality ratios and has functions that could be used to plot several popular diagrams for irrigation water quality classification.
IsoSpec is a fine structure calculator used for obtaining the most probable masses of a chemical compound given the frequencies of the composing isotopes and their masses. It finds the smallest set of isotopologues with a given probability. The probability is assumed to be that of the product of multinomial distributions, each corresponding to one particular element and parametrized by the frequencies of finding these elements in nature. These numbers are supplied by IUPAC - the International Union of Pure and Applied Chemistry. See: Lacki, Valkenborg, Startek (2020) <DOI:10.1021/acs.analchem.0c00959> and Lacki, Startek, Valkenborg, Gambin (2017) <DOI:10.1021/acs.analchem.6b01459> for the description of the algorithms used.
This package provides a collection of datasets containing a variety of in vitro toxicokinetic measurements including -- but not limited to -- chemical fraction unbound in the presence of plasma (f_up), intrinsic hepatic clearance (Clint, uL/min/million hepatocytes), and membrane permeability for oral absorption (Caco2). The datasets provided by the package were processed and analyzed with the companion invitroTKstats package.
Estimation of reliability coefficients for ability estimates and sum scores from item response theory models as defined in Cheng, Y., Yuan, K.-H. and Liu, C. (2012) <doi:10.1177/0013164411407315> and Kim, S. and Feldt, L. S. (2010) <doi:10.1007/s12564-009-9062-8>. The package supports the 3-PL and generalized partial credit models and includes estimates of the standard errors of the reliability coefficient estimators, derived in Andersson, B. and Xin, T. (2018) <doi:10.1177/0013164417713570>.
This package provides a collection of functions that facilitate computational steps related to advice for fisheries management, according to ICES guidelines. These include methods for calculating reference points and model diagnostics.
This package performs exploratory data analysis and variable screening for binary classification models using weight-of-evidence (WOE) and information value (IV). In order to make the package as efficient as possible, aggregations are done in data.table and creation of WOE vectors can be distributed across multiple cores. The package also supports exploration for uplift models (NWOE and NIV).
This package provides efficient implementation of the Isolate-Detect methodology for the consistent estimation of the number and location of multiple change-points in one-dimensional data sequences from the "deterministic + noise" model. For details on the Isolate-Detect methodology, please see Anastasiou and Fryzlewicz (2018) <https://docs.wixstatic.com/ugd/24cdcc_6a0866c574654163b8255e272bc0001b.pdf>. Currently implemented scenarios are: piecewise-constant signal with Gaussian noise, piecewise-constant signal with heavy-tailed noise, continuous piecewise-linear signal with Gaussian noise, continuous piecewise-linear signal with heavy-tailed noise.
Infix operators to detect, subset, and replace the elements matched by a given condition. The functions have several variants of operator types, including subsets, ranges, regular expressions and others. Implemented operators work on vectors, matrices, and lists.
This package provides access to low-level operating system mechanisms for performing atomic operations on shared data structures. Mutexes provide shared and exclusive locks. Semaphores act as counters. Message queues move text strings from one process to another. All these interprocess communication (IPC) tools can optionally block with or without a timeout. Implemented using the cross-platform boost C++ library <https://www.boost.org/doc/libs/release/libs/interprocess/>.
Index of Multiple Deprivation for UK nations at various geographical levels. In England, deprivation data is for Lower Layer Super Output Areas, Middle Layer Super Output Areas, Wards, and Local Authorities based on data from <https://www.gov.uk/government/statistics/english-indices-of-deprivation-2019>. In Wales, deprivation data is for Lower Layer Super Output Areas, Middle Layer Super Output Areas, Wards, and Local Authorities based on data from <https://gov.wales/welsh-index-multiple-deprivation-full-index-update-ranks-2019>. In Scotland, deprivation data is for Data Zones, Intermediate Zones, and Council Areas based on data from <https://simd.scot>. In Northern Ireland, deprivation data is for Super Output Areas and Local Government Districts based on data from <https://www.nisra.gov.uk/statistics/deprivation/northern-ireland-multiple-deprivation-measure-2017-nimdm2017>. The IMD package also provides the composite UK index developed by <https://github.com/mysociety/composite_uk_imd>.
This package contains some important regression methods for interval-valued variables. For each method, it is available the fitted values, residuals and some goodness-of-fit measures.