Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides tools for exploration of R package dependencies. The main deepdep() function allows to acquire deep dependencies of any package and plot them in an elegant way. It also adds some popularity measures for the packages e.g. in the form of download count through the cranlogs package. Uses the CRAN metadata database <http://crandb.r-pkg.org> and Bioconductor metadata <https://bioconductor.org>. Other data acquire functions are: get_dependencies(), get_downloads() and get_description(). The deepdep_shiny() function runs shiny application that helps to produce a nice deepdep plot.
Estimators of Difference-in-Differences based on de Chaisemartin and D'Haultfoeuille.
This package provides tools to sort DICOM-format medical image files, and convert them to NIfTI-1 format.
Interface for Rcpp users to dlib <http://dlib.net> which is a C++ toolkit containing machine learning algorithms and computer vision tools. It is used in a wide range of domains including robotics, embedded devices, mobile phones, and large high performance computing environments. This package allows R users to use dlib through Rcpp'.
Providing six different algorithms that can be used to split the available data into training, test and validation subsets with similar distribution for hydrological model developments. The dataSplit() function will help you divide the data according to specific requirements, and you can refer to the par.default() function to set the parameters for data splitting. The getAUC() function will help you measure the similarity of distribution features between the data subsets. For more information about the data splitting algorithms, please refer to: Chen et al. (2022) <doi:10.1016/j.jhydrol.2022.128340>, Zheng et al. (2022) <doi:10.1029/2021WR031818>.
This package implements the algorithm described in Jun Li and Alicia T. Lamere, "DiPhiSeq: Robust comparison of expression levels on RNA-Seq data with large sample sizes" (Unpublished). Detects not only genes that show different average expressions ("differential expression", DE), but also genes that show different diversities of expressions in different groups ("differentially dispersed", DD). DD genes can be important clinical markers. DiPhiSeq uses a redescending penalty on the quasi-likelihood function, and thus has superior robustness against outliers and other noise. Updates from version 0.1.0: (1) Added the option of using adaptive initial value for phi. (2) Added a function for estimating the proportion of outliers in the data. (3) Modified the input parameter names for clarity, and modified the output format for the main function.
Offers statistical methods to compare diagnostic performance between two binary diagnostic tests on the same subject in clinical studies. Includes functions for generating formatted tables to display diagnostic outcomes, facilitating a clear and comprehensive comparison directly through the R console. Inspired by and extending the functionalities of the DTComPair', tableone', and gtsummary packages.
An implementation of data analytic methods in R for analyses for data with ceiling/floor effects. The package currently includes functions for mean/variance estimation and mean comparison tests. Implemented methods are from Aitkin (1964) <doi:10.1007/BF02289723> and Liu & Wang (in prep).
This package implements a generalized linear model approach for detecting differentially expressed genes across treatment groups in count data. The package supports both quasi-Poisson and negative binomial models to handle over-dispersion, ensuring robust identification of differential expression. It allows for the inclusion of treatment effects and gene-wise covariates, as well as normalization factors for accurate scaling across samples. Additionally, it incorporates statistical significance testing with options for p-value adjustment and log2 fold range thresholds, making it suitable for RNA-seq analysis as described in by Xu et al., (2024) <doi:10.1371/journal.pone.0300565>.
Low level functions for implementing maximum likelihood estimating procedures for complex models using data cloning and Bayesian Markov chain Monte Carlo methods as described in Solymos 2010 <doi:10.32614/RJ-2010-011>. Sequential and parallel MCMC support for JAGS', WinBUGS', OpenBUGS', and Stan'.
The purpose of this package is to provide a comprehensive R interface to the Decision Support System for Agrotechnology Transfer Cropping Systems Model (DSSAT-CSM; see <https://dssat.net> for more information). The package provides cross-platform functions to read and write input files, run DSSAT-CSM, and read output files.
This package implements Meng's data defect index (ddi), which represents the degree of sample bias relative to an iid sample. The data defect correlation (ddc) represents the correlation between the outcome of interest and the selection into the sample; when the sample selection is independent across the population, the ddc is zero. Details are in Meng (2018) <doi:10.1214/18-AOAS1161SF>, "Statistical Paradises and Paradoxes in Big Data (I): Law of Large Populations, Big Data Paradox, and the 2016 US Presidential Election." Survey estimates from the Cooperative Congressional Election Study (CCES) is included to replicate the article's results.
This package provides a GUI to solve dynamic biplots and classical biplot. Try matrices of 2-way and 3-way. The GUI can be run in multiple languages.
Given the non-negative data and its distribution, the package estimates the rank parameter for Non-negative Matrix Factorization. The method is based on hypothesis testing, using a deconvolved bootstrap distribution to assess the significance level accurately despite the large amount of optimization error. The distribution of the non-negative data can be either Normal distributed or Poisson distributed.
This package provides a suite of tools are provided here to support authors in making their research more discoverable. check_keywords() - this function checks the keywords to assess whether they are already represented in the title and abstract. check_fields() - this function compares terminology used across the title, abstract and keywords to assess where terminological diversity (i.e. the use of synonyms) could increase the likelihood of the record being identified in a search. The function looks for terms in the title and abstract that also exist in other fields and highlights these as needing attention. suggest_keywords() - this function takes a full text document and produces a list of unigrams, bigrams and trigrams (1-, 2- or 2-word phrases) present in the full text after removing stop words (words with a low utility in natural language processing) that do not occur in the title or abstract that may be suitable candidates for keywords. suggest_title() - this function takes a full text document and produces a list of the most frequently used unigrams, bigrams and trigrams after removing stop words that do not occur in the abstract or keywords that may be suitable candidates for title words. check_title() - this function carries out a number of sub tasks: 1) it compares the length (number of words) of the title with the mean length of titles in major bibliographic databases to assess whether the title is likely to be too short; 2) it assesses the proportion of stop words in the title to highlight titles with low utility in search engines that strip out stop words; 3) it compares the title with a given sample of record titles from an .ris import and calculates a similarity score based on phrase overlap. This highlights the level of uniqueness of the title. This version of the package also contains functions currently in a non-CRAN package called litsearchr <https://github.com/elizagrames/litsearchr>.
Computes a new measure, DNSL betweenness, via the creation of a new graph from an existing one, duplicating nodes with self-loops. This betweenness centrality does not drop this essential information. Implements Merelo & Molinari (2024) <doi:10.1007/s42001-023-00245-4>.
Computes the first stage GMM estimate of a dynamic linear model with p lags of the dependent variables.
Constructs confidence regions without the need to know the sampling distribution of bivariate data. The method was proposed by Zhiqiu Hu & Rong-cai Yang (2013) <doi:10.1371/journal.pone.0081179.g001>.
This package provides a set of tools to extract bibliographic content from Digital Science Dimensions using DSL API <https://www.dimensions.ai/dimensions-apis/>.
Using a Gaussian copula approach, this package generates simulated data mimicking a target real dataset. It supports normal, Poisson, empirical, and DESeq2 (negative binomial with size factors) marginal distributions. It uses an low-rank plus diagonal covariance matrix to efficiently generate omics-scale data. Methods are described in: Yang, Grant, and Brooks (2025) <doi:10.1101/2025.01.31.634335>.
Dual Wavelet based Nonlinear Autoregressive Distributed Lag model has been developed for noisy time series analysis. This package is designed to capture both short-run and long-run relationships in time series data, while incorporating wavelet transformations. The methodology combines the NARDL model with wavelet decomposition to better capture the nonlinear dynamics of the series and exogenous variables. The package is useful for analyzing economic and financial time series data that exhibit both long-term trends and short-term fluctuations. This package has been developed using algorithm of Jammazi et al. <doi:10.1016/j.intfin.2014.11.011>.
Distributed estimation method is based on a Laplace factor model to solve the estimates of load and specific variance. The philosophy of the package is described in Guangbao Guo. (2022). <doi:10.1007/s00180-022-01270-z>.
Duplicated data can exist in different rows and columns and user may need to treat observations (rows) connected by duplicated data as one observation, e.g. companies can belong to one family (and thus: be one company) by sharing some telephone numbers. This package allows to find connected rows based on data on chosen columns and collapse it into one row.
Area under the curve (AUC; Myerson et al., 2001) <doi:10.1901/jeab.2001.76-235> is a popular measure used in discounting research. Although the calculation of AUC is standardized, there are differences in AUC based on some assumptions. For example, Myerson et al. (2001) <doi:10.1901/jeab.2001.76-235> assumed that (with delay discounting data) a researcher would impute an indifference point at zero delay equal to the value of the larger, later outcome. However, this practice is not clearly followed. This imputed zero-delay indifference point plays an important role in log and ordinal versions of AUC. Ordinal and log versions of AUC are described by Borges et al. (2016)<doi:10.1002/jeab.219>. The package can calculate all three versions of AUC [and includes a new version: IHS(AUC)], impute indifference points when x = 0, calculate ordinal AUC in the case of Halton sampling of x-values, and account for probability discounting AUC.