Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package contains functions for evaluating, analyzing, and fitting combined action dose response surfaces with the Bivariate Response to Additive Interacting Doses (BRAID) model of combined action, along with tools for implementing other combination analysis methods, including Bliss independence, combination index, and additional response surface methods.
This package provides a set of functions to help clinical trial researchers calculate power and sample size for two-arm Bayesian randomized clinical trials that do or do not incorporate historical control data. At some point during the design process, a clinical trial researcher who is designing a basic two-arm Bayesian randomized clinical trial needs to make decisions about power and sample size within the context of hypothesized treatment effects. Through simulation, the simple_sim() function will estimate power and other user specified clinical trial characteristics at user specified sample sizes given user defined scenarios about treatment effect,control group characteristics, and outcome. If the clinical trial researcher has access to historical control data, then the researcher can design a two-arm Bayesian randomized clinical trial that incorporates the historical data. In such a case, the researcher needs to work through the potential consequences of historical and randomized control differences on trial characteristics, in addition to working through issues regarding power in the context of sample size, treatment effect size, and outcome. If a researcher designs a clinical trial that will incorporate historical control data, the researcher needs the randomized controls to be from the same population as the historical controls. What if this is not the case when the designed trial is implemented? During the design phase, the researcher needs to investigate the negative effects of possible historic/randomized control differences on power, type one error, and other trial characteristics. Using this information, the researcher should design the trial to mitigate these negative effects. Through simulation, the historic_sim() function will estimate power and other user specified clinical trial characteristics at user specified sample sizes given user defined scenarios about historical and randomized control differences as well as treatment effects and outcomes. The results from historic_sim() and simple_sim() can be printed with print_table() and graphed with plot_table() methods. Outcomes considered are Gaussian, Poisson, Bernoulli, Lognormal, Weibull, and Piecewise Exponential. The methods are described in Eggleston et al. (2021) <doi:10.18637/jss.v100.i21>.
Boosting Regression Quantiles is a component-wise boosting algorithm, that embeds all boosting steps in the well-established framework of quantile regression. It is initialized with the corresponding quantile, uses a quantile-specific learning rate, and uses quantile regression as its base learner. The package implements this algorithm and allows cross-validation and stability selection.
Computation of large covariance matrices having a block structure up to a permutation of their columns and rows from a small number of samples with respect to the dimension of the matrix. The method is described in the paper Perrot-Dockès et al. (2019) <arXiv:1806.10093>.
Analyze and plot the abundance of different RNA biotypes present in a count matrix, this evaluation can be useful if you want to test different strategies of normalization or analyze a particular biotype in a differential gene expression analysis.
This package provides a collection of Bayesian networks (discrete, Gaussian, and conditional linear Gaussian) collated from recent academic literature. The bnRep_summary object provides an overview of the Bayesian networks in the repository and the package documentation includes details about the variables in each network. A Shiny app to explore the repository can be launched with bnRep_app() and is available online at <https://manueleleonelli.shinyapps.io/bnRep>. Reference: M. Leonelli (2025) <doi:10.1016/j.neucom.2025.129502>.
Calculates B-value and empirical equivalence bound. B-value is defined as the maximum magnitude of a confidence interval; and the empirical equivalence bound is the minimum B-value at a certain level. A new two-stage procedure for hypothesis testing is proposed, where the first stage is conventional hypothesis testing and the second is an equivalence testing procedure using the introduced empirical equivalence bound. See Zhao et al. (2019) "B-Value and Empirical Equivalence Bound: A New Procedure of Hypothesis Testing" <arXiv:1912.13084> for details.
Latent and Stochastic Block Model estimation by a Variational EM algorithm. Various probability distribution are provided (Bernoulli, Poisson...), with or without covariates.
Bootstraps and imputes incomplete datasets. Then performs inference on estimates obtained from analysing the imputed datasets as proposed by von Hippel and Bartlett (2021) <doi:10.1214/20-STS793>.
This package provides functions to combine data on voting blocs size, turnout, and vote choice to estimate each bloc's vote contributions to the Democratic and Republican parties. The package also includes functions for uncertainty estimation and plotting. Users may define voting blocs along a discrete or continuous variable. The package implements methods described in Grimmer, Marble, and Tanigawa-Lau (2023) <doi:10.31235/osf.io/c9fkg>.
The purpose of this package is to fit the three Spatial Econometric Models proposed in Anselin (1988, ISBN:9024737354) in the homoscedastic and the heteroscedatic case. The fit is made through MCMC algorithms and observational working variables approach.
This package implements the Bayesian FDR control described by Newton et al. (2004), <doi:10.1093/biostatistics/5.2.155>. Allows optimisation and visualisation of expected error rates based on tail posterior probability tests. Based on code written by Catalina Vallejos for BASiCS, see Beyond comparisons of means: understanding changes in gene expression at the single-cell level Vallejos et al. (2016) <doi:10.1186/s13059-016-0930-3>.
This package provides a ggplot2 centric approach to bivariate mapping. This is a technique that maps two quantities simultaneously rather than the single value that most thematic maps display. The package provides a suite of tools for calculating breaks using multiple different approaches, a selection of palettes appropriate for bivariate mapping and scale functions for ggplot2 calls that adds those palettes to maps. Tools for creating bivariate legends are also included.
This package contains data sets regarding songs on the Billboard Hot 100 list from 1960 to 2016. The data sets include the ranks for the given year, musical features of a lot of the songs and lyrics for several of the songs as well.
This package provides a simple R wrapper for the Java BiBit algorithm from "A biclustering algorithm for extracting bit-patterns from binary datasets" from Domingo et al. (2011) <DOI:10.1093/bioinformatics/btr464>. An simple adaption for the BiBit algorithm which allows noise in the biclusters is also introduced as well as a function to guide the algorithm towards given (sub)patterns. Further, a workflow to derive noisy biclusters from discoverd larger column patterns is included as well.
This package provides a continuous date scale, omitting weekends and holidays.
Skinfold measurements is one of the most popular and practical methods for estimating percent body fat. Body composition is a term that describes the relative proportions of fat, bone, and muscle mass in the human body. Following the collection of skinfold measurements, regression analysis (a statistical procedure used to predict a dependent variable based on one or more independent or predictor variables) is used to estimate total percent body fat in humans. <doi:10.4324/9780203868744>.
Create a hierarchical acoustic event species classifier out of multiple call type detectors as described in Rankin et al (2017) <doi:10.1111/mms.12381>.
This package contains data and code to accompany the book P. Zuccolotto and M. Manisera (2020) Basketball Data Science. Applications with R. CRC Press. ISBN 9781138600799.
The Bloom Detecting Algorithm enables the detection of blooms within a time series of species abundance and extracts 22 phenological variables. For details, see Karasiewicz et al. (2022) <doi:10.3390/jmse10020174>.
Calculates the bidimensional regression between two 2D configurations following the approach by Tobler (1965).
Defines operating characteristics of Bayesian Adaptive Trials considering a generalised linear model response via Monte Carlo simulations of Bayesian GLM fitted via integrated Laplace approximations (INLA).
Package for Breed Wheat Genomic Selection Pipeline. The R package BWGS is developed by Louis Gautier Tran <louis.gautier.tran@gmail.com> and Gilles Charmet <gilles.charmet@inra.fr>. This repository is forked from original repository <https://forgemia.inra.fr/umr-gdec/bwgs> and modified as a R package.
Fits Bayesian models (amongst others) to dissolution data sets that can be used for dissolution testing. The package was originally constructed to include only the Bayesian models outlined in Pourmohamad et al. (2022) <doi:10.1111/rssc.12535>. However, additional Bayesian and non-Bayesian models (based on bootstrapping and generalized pivotal quanties) have also been added. More models may be added over time.