Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package calculates metrics which quantify the level of similarity between ChIP-Seq profiles. More specifically, the package implements six pseudometrics specialized in pattern similarity detection in ChIP-Seq profiles.
An R implementation of the correlation-based method developed in the Joshi laboratory to analyse and filter processed single-cell RNAseq data. It returns a filtered version of the data containing only genes expression values unaffected by systematic noise.
Collection of spatial transcriptomics datasets stored in SpatialExperiment Bioconductor format, for use in examples, demonstrations, and tutorials. The datasets are from several different platforms and have been sourced from various publicly available sources. Several datasets include images and/or reference annotation labels.
This package provides tools for compositional and other sample-level ecological analyses and visualizations tailored for single-cell RNA-seq data. SETA includes functions for taxonomizing celltypes, normalizing data, performing statistical tests, and visualizing results. Several tutorials are included to guide users and introduce them to key concepts. SETA is meant to teach users about statistical concepts underlying ecological analysis methods so they can apply them to their own single-cell data.
This package provides an R wrapper for the implementation of FI-tSNE from the python package openTNSE. See Poličar et al. (2019) <doi:10.1101/731877> and the algorithm described by Linderman et al. (2018) <doi:10.1038/s41592-018-0308-4>.
This package provides a preprocessing pipeline for single cell RNA-seq/ATAC-seq data that starts from the fastq files and produces a feature count matrix with associated quality control information. It can process fastq data generated by CEL-seq, MARS-seq, Drop-seq, Chromium 10x and SMART-seq protocols.
SNPediaR provides some tools for downloading and parsing data from the SNPedia web site <http://www.snpedia.com>. The implemented functions allow users to import the wiki text available in SNPedia pages and to extract the most relevant information out of them. If some information in the downloaded pages is not automatically processed by the library functions, users can easily implement their own parsers to access it in an efficient way.
Using spatial or bulk gene expression data, estimates abundance of mixed cell types within each observation. Based on "Advances in mixed cell deconvolution enable quantification of cell types in spatial transcriptomic data", Danaher (2022). Designed for use with the NanoString GeoMx platform, but applicable to any gene expression data.
This package allows users to estimate the science-wise false discovery rate from Jager and Leek, "Empirical estimates suggest most published medical research is true," 2013, Biostatistics, using an EM approach due to the presence of rounding and censoring. It also allows users to estimate the false discovery rate conditional on covariates, using a regression framework, as per Boca and Leek, "A direct approach to estimating false discovery rates conditional on covariates," 2018, PeerJ.
SingleCellMultiModal is an ExperimentHub package that serves multiple datasets obtained from GEO and other sources and represents them as MultiAssayExperiment objects. We provide several multi-modal datasets including scNMT, 10X Multiome, seqFISH, CITEseq, SCoPE2, and others. The scope of the package is is to provide data for benchmarking and analysis. To cite, use the citation function and see <https://doi.org/10.1371/journal.pcbi.1011324>.
Mass-Spectrometry based spatial proteomics have enabled the proteome-wide mapping of protein subcellular localization (Orre et al. 2019, Molecular Cell). SubCellBarCode R package robustly classifies proteins into corresponding subcellular localization.
This package provides a pipeline which processes single cell RNA-seq (scRNA-seq) reads from CEL-seq and CEL-seq2 protocols. Demultiplex scRNA-seq FASTQ files, align reads to reference genome using Rsubread, and generate UMI filtered count matrix. Also provide visualizations of read alignments and pre- and post-alignment QC metrics.
This package aims to quantify and remove putative double strand DNA from a strand-specific RNA sample. There are also options and methods to plot the positive/negative proportions of all sliding windows, which allow users to have an idea of how much the sample was contaminated and the appropriate threshold to be used for filtering.
This package provides tools to analyze alternative splicing sites, interpret outcomes based on sequence information, select and design primers for site validiation and give visual representation of the event to guide downstream experiments.
spiky implements methods and model generation for cfMeDIP (cell-free methylated DNA immunoprecipitation) with spike-in controls. CfMeDIP is an enrichment protocol which avoids destructive conversion of scarce template, making it ideal as a "liquid biopsy," but creating certain challenges in comparing results across specimens, subjects, and experiments. The use of synthetic spike-in standard oligos allows diagnostics performed with cfMeDIP to quantitatively compare samples across subjects, experiments, and time points in both relative and absolute terms.
High-throughput sequencing technologies allow the production of large volumes of short sequences, which can be aligned to the genome to create a set of matches to the genome. By looking for regions of the genome which to which there are high densities of matches, we can infer a segmentation of the genome into regions of biological significance. The methods in this package allow the simultaneous segmentation of data from multiple samples, taking into account replicate data, in order to create a consensus segmentation. This has obvious applications in a number of classes of sequencing experiments, particularly in the discovery of small RNA loci and novel mRNA transcriptome discovery.
Samples large data such that spectral clustering is possible while preserving density information in edge weights. More specifically, given a matrix of coordinates as input, SamSPECTRAL first builds the communities to sample the data points. Then, it builds a graph and after weighting the edges by conductance computation, the graph is passed to a classic spectral clustering algorithm to find the spectral clusters. The last stage of SamSPECTRAL is to combine the spectral clusters. The resulting "connected components" estimate biological cell populations in the data. See the vignette for more details on how to use this package, some illustrations, and simple examples.
Our scLANE model uses truncated power basis spline models to build flexible, interpretable models of single cell gene expression over pseudotime or latent time. The modeling architectures currently supported are Negative-binomial GLMs, GEEs, & GLMMs. Downstream analysis functionalities include model comparison, dynamic gene clustering, smoothed counts generation, gene set enrichment testing, & visualization.
Spatial allelic expression counts from Combs & Fraser (2018), compiled into a SummarizedExperiment object. This package contains data of allelic expression counts of spatial slices of a fly embryo, a Drosophila melanogaster x Drosophila simulans cross. See the CITATION file for the data source, and the associated script for how the object was constructed from publicly available data.
This package provides a novel feature selection algorithm for binary classification using support vector machine recursive feature elimination SVM-RFE and t-statistic. In this feature selection process, the selected features are differentially significant between the two classes and also they are good classifier with higher degree of classification accuracy.
sechm provides a simple interface between SummarizedExperiment objects and the ComplexHeatmap package. It enables plotting annotated heatmaps from SE objects, with easy access to rowData and colData columns, and implements a number of features to make the generation of heatmaps easier and more flexible. These functionalities used to be part of the SEtools package.
SNP locations and alleles for Homo sapiens extracted from NCBI dbSNP Build 144. The source data files used for this package were created by NCBI on May 29-30, 2015, and contain SNPs mapped to reference genome GRCh37.p13. WARNING: Note that the GRCh37.p13 genome is a patched version of GRCh37. However the patch doesn't alter chromosomes 1-22, X, Y, MT. GRCh37 itself is the same as the hg19 genome from UCSC *except* for the mitochondrion chromosome. Therefore, the SNPs in this package can be "injected" in BSgenome.Hsapiens.UCSC.hg19 and they will land at the correct position but this injection will exclude chrM (i.e. nothing will be injected in that sequence).
An example cancer whole genome sequencing data for the SomatiCA package.
standR is an user-friendly R package providing functions to assist conducting good-practice analysis of Nanostring's GeoMX DSP data. All functions in the package are built based on the SpatialExperiment object, allowing integration into various spatial transcriptomics-related packages from Bioconductor. standR allows data inspection, quality control, normalization, batch correction and evaluation with informative visualizations.