Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
For making Trellis-type conditioning plots without strip labels. This is useful for displaying the structure of results from factorial designs and other studies when many conditioning variables would clutter the display with layers of redundant strip labels. Settings of the variables are encoded by layout and spacing in the trellis array and decoded by a separate legend. The functionality is implemented by a single S3 generic strucplot() function that is a wrapper for the Lattice package's xyplot() function. This allows access to all Lattice graphics capabilities in the usual way.
This package provides functions for conducting jackknife Euclidean / empirical likelihood inference for Spearman's rho (de Carvalho and Marques (2012) <doi:10.1080/10920277.2012.10597644>).
Send syslog protocol messages to a remote syslog server specified by host name and TCP network port.
This package provides a sparklyr extension that enables reading and writing TensorFlow TFRecord files via Apache Spark'.
This package implements the discrete nonlinear filter (DNF) of Kitagawa (1987) <doi:10.1080/01621459.1987.10478534> to a wide class of stochastic volatility (SV) models with return and volatility jumps following the work of Bégin and Boudreault (2021) <doi:10.1080/10618600.2020.1840995> to obtain likelihood evaluations and maximum likelihood parameter estimates. Offers several built-in SV models and a flexible framework for users to create customized models by specifying drift and diffusion functions along with an arrival distribution for the return and volatility jumps. Allows for the estimation of factor models with stochastic volatility (e.g., heteroskedastic volatility CAPM) by incorporating expected return predictors. Also includes functions to compute filtering and prediction distribution estimates, to simulate data from built-in and custom SV models with jumps, and to forecast future returns and volatility values using Monte Carlo simulation from a given SV model.
Diagnostics for fixed effects linear and general linear regression models fitted with survey data. Extensions of standard diagnostics to complex survey data are included: standardized residuals, leverages, Cook's D, dfbetas, dffits, condition indexes, and variance inflation factors as found in Li and Valliant (Surv. Meth., 2009, 35(1), pp. 15-24; Jnl. of Off. Stat., 2011, 27(1), pp. 99-119; Jnl. of Off. Stat., 2015, 31(1), pp. 61-75); Liao and Valliant (Surv. Meth., 2012, 38(1), pp. 53-62; Surv. Meth., 2012, 38(2), pp. 189-202). Variance inflation factors and condition indexes are also computed for some general linear models as described in Liao (U. Maryland thesis, 2010).
This package provides a tool for computing network representations of attitudes, extracted from tabular data such as sociological surveys. Development of surveygraph software and training materials was initially funded by the European Union under the ERC Proof-of-concept programme (ERC, Attitude-Maps-4-All, project number: 101069264). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Research Council Executive Agency. Neither the European Union nor the granting authority can be held responsible for them.
This package provides a set of tools to assist statistical programmers in validating Study Data Tabulation Model (SDTM) domain data sets. Statistical programmers are required to validate that a SDTM data set domain has been programmed correctly, per the SDTM Implementation Guide (SDTMIG) by CDISC (<https://www.cdisc.org/standards/foundational/sdtmig>), study specification, and study protocol using a process called double programming. Double programming involves two different programmers independently converting the raw electronic data cut (EDC) data into a SDTM domain data table and comparing their results to ensure accurate standardization of the data. One of these attempts is termed production and the other validation'. Generally, production runs are the official programs for submittals and these are written in SAS'. Validation runs can be programmed in another language, in this case R'.
This package provides the SELF criteria to learn causal structure. Please cite "Ruichu Cai, Jie Qiao, Zhenjie Zhang, Zhifeng Hao. SELF: Structural Equational Embedded Likelihood Framework for Causal Discovery. AAAI. 2018.".
This package contains fast functions to calculate the exact Bayes posterior for the Sparse Normal Sequence Model, implementing the algorithms described in Van Erven and Szabo (2021, <doi:10.1214/20-BA1227>). For general hierarchical priors, sample sizes up to 10,000 are feasible within half an hour on a standard laptop. For beta-binomial spike-and-slab priors, a faster algorithm is provided, which can handle sample sizes of 100,000 in half an hour. In the implementation, special care has been taken to assure numerical stability of the methods even for such large sample sizes.
This package provides a simple, configurable, provider-agnostic OAuth 2.0 and OpenID Connect (OIDC) authentication framework for shiny applications using S7 classes. Defines providers, clients, and tokens, as well as various supporting functions and a shiny module. Features include cross-site request forgery (CSRF) protection, state encryption, Proof Key for Code Exchange (PKCE) handling, validation of OIDC identity tokens (nonces, signatures, claims), automatic user info retrieval, asynchronous flows, and hooks for audit logging.
Includes four functions: RFactor_calc(), RFactor_est(), KFactor() and SoilLoss(). The rainfall erosivity factors can be calculated or estimated, and soil erodibility will be estimated by the equation extracted from the monograph. Soil loss will be estimated by the product of five factors (rainfall erosivity, soil erodibility, length and steepness slope, cover-management factor and support practice factor. In the future, additional functions can be included. This efforts to advance research in soil and water conservation, with fast and accurate results.
This package provides tools to import and export from several existing pieces of ion-channel analysis software such as TAC', QUB', SCAN', and Clampfit', implements procedures such as dwell-time correction and defining bursts with a critical time, and provides tools for analysis of bursts, such as tools for sorting and plotting.
This package provides a general framework for performing sparse functional clustering as originally described in Floriello and Vitelli (2017) <doi:10.1016/j.jmva.2016.10.008>, with the possibility of jointly handling data misalignment (see Vitelli, 2019, <doi:10.48550/arXiv.1912.00687>).
Random Forest-like tree ensemble that works with groups of predictor variables. When building a tree, a number of variables is taken randomly from each group separately, thus ensuring that it considers variables from each group for the splits. Useful when rows contain information about different things (e.g. user information and product information) and it's not sensible to make a prediction with information from only one group of variables, or when there are far more variables from one group than the other and it's desired to have groups appear evenly on trees. Trees are grown using the C5.0 algorithm rather than the usual CART algorithm. Supports parallelization (multithreaded), missing values in predictors, and categorical variables (without doing One-Hot encoding in the processing). Can also be used to create a regular (non-stratified) Random Forest-like model, but made up of C5.0 trees and with some additional control options. As it's built with C5.0 trees, it works only for classification (not for regression).
Uses a novel rank-based nonparametric approach to evaluate a surrogate marker in a small sample size setting. Details are described in Parast et al (2024) <doi:10.1093/biomtc/ujad035> and Hughes A et al (2025) <doi:10.1002/sim.70241>. A tutorial for this package can be found at <https://www.laylaparast.com/surrogaterank> and a Shiny App implementing the package can be found at <https://parastlab.shinyapps.io/SurrogateRankApp/>.
Analyzes shooting data with respect to group shape, precision, and accuracy. This includes graphical methods, descriptive statistics, and inference tests using standard, but also non-parametric and robust statistical methods. Implements distributions for radial error in bivariate normal variables. Works with files exported by OnTarget PC/TDS', Silver Mountain e-target, ShotMarker e-target, SIUS e-target, or Taran', as well as with custom data files in text format. Supports inference from range statistics such as extreme spread. Includes a set of web-based graphical user interfaces.
Conduct various tests for evaluating implicit biases in word embeddings: Word Embedding Association Test (Caliskan et al., 2017), <doi:10.1126/science.aal4230>, Relative Norm Distance (Garg et al., 2018), <doi:10.1073/pnas.1720347115>, Mean Average Cosine Similarity (Mazini et al., 2019) <arXiv:1904.04047>, SemAxis (An et al., 2018) <arXiv:1806.05521>, Relative Negative Sentiment Bias (Sweeney & Najafian, 2019) <doi:10.18653/v1/P19-1162>, and Embedding Coherence Test (Dev & Phillips, 2019) <arXiv:1901.07656>.
Extended Susceptible-Exposed-Infected-Recovery Model for handling high false negative rate and symptom based administration of diagnostic tests. <doi:10.1101/2020.09.24.20200238>.
Perform common dendrometry operations such as inventory preparing, and inventory data analysis.
Classical methods for combining summary data from genome-wide association studies (GWAS) only use marginal genetic effects and power can be compromised in the presence of heterogeneity. subgxe is a R package that implements p-value assisted subset testing for association (pASTA), a method developed by Yu et al. (2019) <doi:10.1159/000496867>. pASTA generalizes association analysis based on subsets by incorporating gene-environment interactions into the testing procedure.
This package provides a simple interface to integrate star ratings into your shiny apps. It can be used for customer feedback systems, user reviews, or any application that requires user ratings. shinyRatings offers a straightforward and customisable solution that enhances user engagement and facilitates valuable feedback collection.
Smart Adaptive Recommendations (SAR) is the name of a fast, scalable, adaptive algorithm for personalized recommendations based on user transactions and item descriptions. It produces easily explainable/interpretable recommendations and handles "cold item" and "semi-cold user" scenarios. This package provides two implementations of SAR': a standalone implementation, and an interface to a web service in Microsoft's Azure cloud: <https://github.com/Microsoft/Product-Recommendations/blob/master/doc/sar.md>. The former allows fast and easy experimentation, and the latter provides robust scalability and extra features for production use.
Explains the behavior of a time series by decomposing it into its trend, seasonality and residuals. It is built to perform very well in the presence of significant level shifts. It is designed to play well with any breakpoint algorithm and any smoothing algorithm. Currently defaults to lowess for smoothing and strucchange for breakpoint identification. The package is useful in areas such as trend analysis, time series decomposition, breakpoint identification and anomaly detection.