Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides SNP array data from different types of copy-number regions. These regions were identified manually by the authors of the package and may be used to generate realistic data sets with known truth.
This package provides an implementation of bee swarm plots. The bee swarm plot is a one-dimensional scatter plot like stripchart, but with closely-packed, non-overlapping points.
This package provides functions for cognitive diagnosis modeling and multidimensional item response modeling for dichotomous and polytomous item responses. It enables the estimation of the DINA and DINO model, the multiple group (polytomous) GDINA model, the multiple choice DINA model, the general diagnostic model (GDM), the structured latent class model (SLCA), and regularized latent class analysis. See George, Robitzsch, Kiefer, Gross, and Uenlue (2017) doi:10.18637/jss.v074.i02 for further details on estimation and the package structure. For tutorials on how to use the CDM package see George and Robitzsch (2015, doi:10.20982/tqmp.11.3.p189) as well as Ravand and Robitzsch (2015).
This package contains a function that imports data from a CSV file, or uses manually entered data from the format (x, y, weight) and plots the appropriate ACC vs LOI graph and LMA graph. The main function is plotLMA (source file, header) that takes a data set and plots the appropriate LMA and ACC graphs. If no source file (a string) was passed, a manual data entry window is opened. The header parameter indicates by TRUE/FALSE (false by default) if the source CSV file has a header row or not. The dataset should contain only one independent variable (x) and one dependent variable (y) and can contain a weight for each observation.
This package provides data used as examples to demonstrate GAMLSS models.
There are a number of binary files associated with the Webdriver/Selenium project (see http://www.seleniumhq.org/download/, https://sites.google.com/a/chromium.org/chromedriver/, https://github.com/mozilla/geckodriver, http://phantomjs.org/download.html, and https://github.com/SeleniumHQ/selenium/wiki/InternetExplorerDriver for more information). This package provides functions to download these binaries and to manage processes involving them.
This is a package for converting natural language text into tokens. It includes tokenizers for shingled n-grams, skip n-grams, words, word stems, sentences, paragraphs, characters, shingled characters, lines, tweets, Penn Treebank, regular expressions, as well as functions for counting characters, words, and sentences, and a function for splitting longer texts into separate documents, each with the same number of words. The tokenizers have a consistent interface, and the package is built on the stringi and Rcpp packages for fast yet correct tokenization in UTF-8 encoding.
This package provides a set of functions to analyze overdispersed counts or proportions. Most of the methods are already available elsewhere but are scattered in different packages. The proposed functions should be considered as complements to more sophisticated methods such as generalized estimating equations (GEE) or generalized linear mixed effect models (GLMM).
This package provides a collection of Lua filters that extend the functionality of R Markdown templates (e.g., count words or post-process citations).
This package provides a collection of lexical hash tables, dictionaries, and word lists.
This package contains tools for exploring Hardy-Weinberg equilibrium for diallelic genetic marker data. All classical tests (chi-square, exact, likelihood-ratio and permutation tests) for Hardy-Weinberg equilibrium are included in the package, as well as functions for power computation and for the simulation of marker data under equilibrium and disequilibrium. Routines for dealing with markers on the X-chromosome are included. Functions for testing equilibrium in the presence of missing data by using multiple imputation are also provided. Implements several graphics for exploring the equilibrium status of a large set of diallelic markers: ternary plots with acceptance regions, log-ratio plots and Q-Q plots.
The purpose of this package is to factor out logic and math common to Item Factor Analysis fitting, diagnostics, and analysis. It is envisioned as core support code suitable for more specialized IRT packages to build upon. Complete access to optimized C functions is made available with R_RegisterCCallable().
This package provides functions for kernel-regression-based association tests including Burden test, SKAT and SKAT-O. These methods aggregate individual SNP score statistics in a SNP set and efficiently compute SNP-set level p-values.
This is a package for fast image processing for images in up to 4 dimensions (two spatial dimensions, one time/depth dimension, one color dimension). It provides most traditional image processing tools (filtering, morphology, transformations, etc.) as well as various functions for easily analyzing image data using R. The package wraps CImg, a simple, modern C++ library for image processing.
This package contains functions to generate pre-defined summary statistics from activPAL events files. The package also contains functions to produce informative graphics that visualize physical activity behaviour and trends. This includes generating graphs that align physical activity behaviour with additional time based observations described by other data sets, such as sleep diaries and continuous glucose monitoring data.
This package provides a placeholder for the Liberation fontset intended for the fontquiver package. This fontset covers the 12 combinations of families (sans, serif, mono) and faces (plain, bold, italic, bold italic) supported in R graphics devices.
This package provides functions for making low-level API requests to Amazon Web Services. The functions handle building, signing, and sending requests, and receiving responses. They are designed to help build higher-level interfaces to individual services, such as Simple Storage Service (S3).
This package provides a comprehensive toolbox for analysing Spatial Point Patterns. It is focused mainly on two-dimensional point patterns, including multitype/marked points, in any spatial region. It also supports three-dimensional point patterns, space-time point patterns in any number of dimensions, point patterns on a linear network, and patterns of other geometrical objects. It supports spatial covariate data such as pixel images and contains over 2000 functions for plotting spatial data, exploratory data analysis, model-fitting, simulation, spatial sampling, model diagnostics, and formal inference.
This package provides a collection of functions to support matrix calculations for probability, econometric and numerical analysis. There are additional functions that are comparable to APL functions which are useful for actuarial models such as pension mathematics.
This package provides an implementation of the Tukey, Mandel, Johnson-Graybill, LBI, Tusell and modified Tukey non-additivity tests.
This package provides simple utility functions to read from and write to the system clipboards.
This package provides a collection of utilities that allow programming with R's operators. Routines allow classifying operators, translating to and from an operator and its underlying function, and inverting some operators (e.g. comparison operators), etc. All methods can be extended to custom infix operators.
This package provides functions for performing phylogenetic comparative analyses.
This package provides tools for fitting linear models and generalized linear models to large data sets by updating algorithms.