Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Processes and visualizes the output of complex phylogenetic analyses from the RevBayes phylogenetic graphical modeling software.
Allows for production of Czekanowski's Diagrams with clusters. See K. Bartoszek, A. Vasterlund (2020) <doi:10.2478/bile-2020-0008> and K. Bartoszek, Y. Luo (2023) <doi:10.14708/ma.v51i2.7259>. The suggested FuzzyDBScan package (which allows for fuzzy clustering) can be obtained from <https://github.com/henrifnk/FuzzyDBScan/> (or from CRAN's Archive <https://cran.r-project.org/src/contrib/Archive/FuzzyDBScan/>).
Retime speech signals with a native Waveform Similarity Overlap-Add (WSOLA) implementation translated from the TSM toolbox by Driedger & Müller (2014) <https://www.audiolabs-erlangen.de/content/resources/MIR/TSMtoolbox/2014_DriedgerMueller_TSM-Toolbox_DAFX.pdf>. Design retimings and pitch (f0) transformations with tidy data and apply them via Praat interface. Produce spectrograms, spectra, and amplitude envelopes. Includes implementation of vocalic speech envelope analysis (fft_spectrum) technique and example data (mm1) from Tilsen, S., & Johnson, K. (2008) <doi:10.1121/1.2947626>.
This package produces tables with the level of replication (number of replicates) and the experimental uncoded values of the quantitative factors to be used for rotatable Central Composite Design (CCD) experimentation and a 2-D contour plot of the corresponding variance of the predicted response according to Mead et al. (2012) <doi:10.1017/CBO9781139020879> design_ccd(), and analyzes CCD data with response surface methodology ccd_analysis(). A rotatable CCD provides values of the variance of the predicted response that are concentrically distributed around the average treatment combination used in the experimentation, which with uniform precision (implied by the use of several replicates at the average treatment combination) improves greatly the search and finding of an optimum response. These properties of a rotatable CCD represent undeniable advantages over the classical factorial design, as discussed by Panneton et al. (1999) <doi:10.13031/2013.13267> and Mead et al. (2012) <doi:10.1017/CBO9781139020879.018> among others.
An implementation of the QUEFTS (Quantitative Evaluation of the Native Fertility of Tropical Soils) model. The model (1) estimates native nutrient (N, P, K) supply of soils from a few soil chemical properties; and (2) computes crop yield given that supply, crop parameters, fertilizer application, and crop attainable yield. See Janssen et al. (1990) <doi:10.1016/0016-7061(90)90021-Z> for the technical details and Sattari et al. (2014) <doi:10.1016/j.fcr.2013.12.005> for a recent evaluation and improvements.
Collection of tools to calculate portfolio performance metrics. Portfolio performance is a key measure for investors. These metrics are important to analyse how effectively their money has been invested. This package uses portfolio theories to give investor tools to evaluate their portfolio performance. For more information see, Markowitz, H.M. (1952), <doi:10.2307/2975974>. Analysis of Investments & Management of Portfolios [2012, ISBN:978-8131518748].
Protocol Buffers are a way of encoding structured data in an efficient yet extensible format. Google uses Protocol Buffers for almost all of its internal RPC protocols and file formats. Additional documentation is available in two included vignettes one of which corresponds to our JSS paper (2016, <doi:10.18637/jss.v071.i02>. A sufficiently recent version of Protocol Buffers library is required; currently version 3.3.0 from 2017 is the stated minimum.
Random univariate and multivariate finite mixture model generation, estimation, clustering, latent class analysis and classification. Variables can be continuous, discrete, independent or dependent and may follow normal, lognormal, Weibull, gamma, Gumbel, binomial, Poisson, Dirac, uniform or circular von Mises parametric families.
Duplicated restaurant data (pre-processed and formatted) for entity resolution. This package contains formatted data from a data set that contains information about different restaurants, with the Zagats portion containing 331 records and the Fodors portion containing 533 records. The following variables are included in the data set: id, name, address, city, phone, type. The data set has a respective gold data set that provides information on which records match based on id.
Robustness -- eXperimental', eXtraneous', or eXtraordinary Functionality for Robust Statistics. Hence methods which are not well established, often related to methods in package robustbase'. Amazingly, BACON()', originally by Billor, Hadi, and Velleman (2000) <doi:10.1016/S0167-9473(99)00101-2> has become established in places. The "barrow wheel" `rbwheel()` is from Stahel and Mächler (2009) <doi:10.1111/j.1467-9868.2009.00706.x>.
Multiscale Curvature Classification of ground returns in 3-D LiDAR point clouds, designed for forested environments. RMCC is a porting to R of the MCC-lidar method by Evans and Hudak (2007) <doi:10.1109/TGRS.2006.890412>.
This package implements simple Hamiltonian Monte Carlo routines in R for sampling from any desired target distribution which is continuous and smooth. See Neal (2017) <arXiv:1701.02434> for further details on Hamiltonian Monte Carlo. Automatic parameter selection is not supported.
Adds the MIxing-Data Sampling (MIDAS, Ghysels et al. (2007) <doi:10.1080/07474930600972467>) components to a variety of GARCH and MEM (Engle (2002) <doi:10.1002/jae.683>, Engle and Gallo (2006) <doi:10.1016/j.jeconom.2005.01.018>, and Amendola et al. (2024) <doi:10.1016/j.seps.2023.101764>) models, with the aim of predicting the volatility with additional low-frequency (that is, MIDAS) terms. The estimation takes place through simple functions, which provide in-sample and (if present) and out-of-sample evaluations. rumidas also offers a summary tool, which synthesizes the main information of the estimated model. There is also the possibility of generating one-step-ahead and multi-step-ahead forecasts.
Toolbox for chemometrics analysis of bidimensional gas chromatography data. This package import data for common scientific data format (NetCDF) and fold it to 2D chromatogram. Then, it can perform preprocessing and multivariate analysis. In the preprocessing algorithms, baseline correction, smoothing, and peak alignment are available. While in multivariate analysis, multiway principal component analysis is incorporated.
The TRUST4 or MiXCR is used to identify the clonotypes. The goal of rTCRBCRr is to process the results from these clonotyping tools, and analyze the clonotype repertoire metrics based on chain names and IGH isotypes. The manuscript is still under preparation for publication for now. The references describing the methods in this package will be added later.
This package provides a statistical tool for multivariate modeling and clustering using stepwise cluster analysis. The modeling output of rSCA is constructed as a cluster tree to represent the complicated relationships between multiple dependent and independent variables. A free tool (named rSCA Tree Generator) for visualizing the cluster tree from rSCA is also released and it can be downloaded at <https://rscatree.weebly.com/>.
This package provides robust methods to detect change-points in uni- or multivariate time series. They can cope with corrupted data and heavy tails. Focus is on the detection of abrupt changes in location, but changes in the scale or dependence structure can be detected as well. This package provides tests for change detection in uni- and multivariate time series based on Huberized versions of CUSUM tests proposed in Duerre and Fried (2019) <DOI:10.48550/arXiv.1905.06201>, and tests for change detection in univariate time series based on 2-sample U-statistics or 2-sample U-quantiles as proposed by Dehling et al. (2015) <DOI:10.1007/978-1-4939-3076-0_12> and Dehling, Fried and Wendler (2020) <DOI:10.1093/biomet/asaa004>. Furthermore, the packages provides tests on changes in the scale or the correlation as proposed in Gerstenberger, Vogel and Wendler (2020) <DOI:10.1080/01621459.2019.1629938>, Dehling et al. (2017) <DOI:10.1017/S026646661600044X>, and Wied et al. (2014) <DOI:10.1016/j.csda.2013.03.005>.
This package provides the datasets in the book "Methods of Multivariate Analysis (3rd)", such as Table 6.27 Blood Pressure Data, for statistical analysis,especially MANOVA. The dataset names correspond to their numbering in the third edition of the book, such as table6.27. Based on the book by Rencher and Christensen (2012, ISBN:9780470178966).
Dump source code, documentation and vignettes of an R package into a single file. Supports installed packages, tar.gz archives, and package source directories. If the package is not installed, only its source is automatically downloaded from CRAN for processing. The output is a single plain text file or a character vector, which is useful to ingest complete package documentation and source into a large language model (LLM) or pass it further to other tools, such as ragnar <https://github.com/tidyverse/ragnar> to create a Retrieval-Augmented Generation (RAG) workflow.
Adds menu items for case 2 (profile case) best-worst scaling (BWS2) to the R Commander. BWS2 is a question-based survey method that constructs profiles (combinations of attribute levels) using an orthogonal array, asks respondents to select the best and worst levels in each profile, and measures preferences for attribute levels by analyzing the responses. For details, see Aizaki and Fogarty (2019) <doi:10.1016/j.jocm.2019.100171>.
This package provides a framework for unit testing for realistic minimalists, where we distinguish between expected, acceptable, current, fallback, ideal, or regressive behaviour. It can also be used for monitoring third-party software projects for changes.
Uses the generalized ratio-of-uniforms (RU) method to simulate from univariate and (low-dimensional) multivariate continuous distributions. The user specifies the log-density, up to an additive constant. The RU algorithm is applied after relocation of mode of the density to zero, and the user can choose a tuning parameter r. For details see Wakefield, Gelfand and Smith (1991) <DOI:10.1007/BF01889987>, Efficient generation of random variates via the ratio-of-uniforms method, Statistics and Computing (1991) 1, 129-133. A Box-Cox variable transformation can be used to make the input density suitable for the RU method and to improve efficiency. In the multivariate case rotation of axes can also be used to improve efficiency. From version 1.2.0 the Rcpp package <https://cran.r-project.org/package=Rcpp> can be used to improve efficiency.
Estimation of abundance and other demographic parameters for closed populations, open populations and the robust design in capture-recapture experiments using loglinear models.
This package provides a toolkit for the analysis of paths from spatial tracking experiments and calculation of goal-finding strategies. This package is centered on an approach using machine learning for path classification.