Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Provided are Computational methods for Immune Cell-type Subsets, including:(1) DCQ (Digital Cell Quantifier) to infer global dynamic changes in immune cell quantities within a complex tissue; and (2) VoCAL (Variation of Cell-type Abundance Loci) a deconvolution-based method that utilizes transcriptome data to infer the quantities of immune-cell types, and then uses these quantitative traits to uncover the underlying DNA loci.
This package implements a classification method described by Grice (2011, ISBN:978-0-12-385194-9) using binary procrustes rotation; a simplified version of procrustes rotation.
Measuring cellular energetics is essential to understanding a matrixâ s (e.g. cell, tissue or biofluid) metabolic state. The Agilent Seahorse machine is a common method to measure real-time cellular energetics, but existing analysis tools are highly manual or lack functionality. The Cellular Energetics Analysis Software (ceas) R package fills this analytical gap by providing modular and automated Seahorse data analysis and visualization using the methods described by Mookerjee et al. (2017) <doi:10.1074/jbc.m116.774471>.
Estimate survival using data mapped to the Observational Medical Outcomes Partnership common data model. Survival can be estimated based on user-defined study cohorts.
Cristin to Zotero ('c2z') aims at obtaining total dominion over Cristin ('Current Research Information SysTem in Norway') and Zotero'. The package enables manipulating Zotero libraries using R'. Import references from Cristin', Regjeringen', CRAN', ISBN ('Alma', LoC'), and DOI ('CrossRef', DataCite') to a Zotero library. Add, edit, copy, or delete items, including attachments and collections, and export references to BibLaTeX (and other formats).
Simulates clinical trials and summarizes causal effects and treatment policy estimands in the presence of intercurrent events in a transparent and intuitive manner.
Correlates of protection (CoP) and correlates of risk (CoR) study the immune biomarkers associated with an infectious disease outcome, e.g. COVID or HIV-1 infection. This package contains shared functions for analyzing CoP and CoR, including bootstrapping procedures, competing risk estimation, and bootstrapping marginalized risks.
R interface for RAPIDS cuML (<https://github.com/rapidsai/cuml>), a suite of GPU-accelerated machine learning libraries powered by CUDA (<https://en.wikipedia.org/wiki/CUDA>).
The Satellite Application Facility on Climate Monitoring (CM SAF) is a ground segment of the European Organization for the Exploitation of Meteorological Satellites (EUMETSAT) and one of EUMETSATs Satellite Application Facilities. The CM SAF contributes to the sustainable monitoring of the climate system by providing essential climate variables related to the energy and water cycle of the atmosphere (<https://www.cmsaf.eu>). It is a joint cooperation of eight National Meteorological and Hydrological Services. The cmsaf R-package includes a shiny based interface for an easy application of the cmsafops and cmsafvis packages - the CM SAF R Toolbox. The Toolbox offers an easy way to prepare, manipulate, analyse and visualize CM SAF NetCDF formatted data. Other CF conform NetCDF data with time, longitude and latitude dimension should be applicable, but there is no guarantee for an error-free application. CM SAF climate data records are provided for free via (<https://wui.cmsaf.eu/safira>). Detailed information and test data are provided on the CM SAF webpage (<http://www.cmsaf.eu/R_toolbox>).
This package provides functions for working with code lists and vectors with codes. These are an alternative for factor that keep track of both the codes and labels. Methods allow for transforming between codes and labels. Also supports hierarchical code lists.
This package provides a tiny package to generate CRediT author statements (<https://credit.niso.org/>). It provides three functions: create a template, read it back and generate the CRediT author statement in a text file.
Estimation, prediction, and simulation of nonstationary Gaussian process with modular covariate-based covariance functions. Sources of nonstationarity, such as spatial mean, variance, geometric anisotropy, smoothness, and nugget, can be considered based on spatial characteristics. An induced compact-supported nonstationary covariance function is provided, enabling fast and memory-efficient computations when handling densely sampled domains.
Given a patient-sharing network, calculate either the classic care density as proposed by Pollack et al. (2013) <doi:10.1007/s11606-012-2104-7> or the fragmented care density as proposed by Engels et al. (2024) <doi:10.1186/s12874-023-02106-0>. By utilizing the igraph and data.table packages, the provided functions scale well for very large graphs.
Cancer RADAR is a project which aim is to develop an infrastructure that allows quantifying the risk of cancer by migration background across Europe. This package contains a set of functions cancer registries partners should use to reshape 5 year-age group cancer incidence data into a set of summary statistics (see Boyle & Parkin (1991, ISBN:978-92-832-1195-2)) in lines with Cancer RADAR data protections rules.
Covariance is of universal prevalence across various disciplines within statistics. We provide a rich collection of geometric and inferential tools for convenient analysis of covariance structures, topics including distance measures, mean covariance estimator, covariance hypothesis test for one-sample and two-sample cases, and covariance estimation. For an introduction to covariance in multivariate statistical analysis, see Schervish (1987) <doi:10.1214/ss/1177013111>.
Race results of the Cherry Blossom Run, which is an annual road race that takes place in Washington, DC.
Automated flagging of common spatial and temporal errors in biological and paleontological collection data, for the use in conservation, ecology and paleontology. Includes automated tests to easily flag (and exclude) records assigned to country or province centroid, the open ocean, the headquarters of the Global Biodiversity Information Facility, urban areas or the location of biodiversity institutions (museums, zoos, botanical gardens, universities). Furthermore identifies per species outlier coordinates, zero coordinates, identical latitude/longitude and invalid coordinates. Also implements an algorithm to identify data sets with a significant proportion of rounded coordinates. Especially suited for large data sets. The reference for the methodology is: Zizka et al. (2019) <doi:10.1111/2041-210X.13152>.
Implementation of Tobit type I and type II families for censored regression using the mgcv package, based on methods detailed in Woods (2016) <doi:10.1080/01621459.2016.1180986>.
This package provides a statistical framework and computational procedure for identifying the sub-populations within a tumor, determining the mutation profiles of each subpopulation, and inferring the tumor's phylogenetic history. The input are variant allele frequencies (VAFs) of somatic single nucleotide alterations (SNAs) along with allele-specific coverage ratios between the tumor and matched normal sample for somatic copy number alterations (CNAs). These quantities can be directly taken from the output of existing software. Canopy provides a general mathematical framework for pooling data across samples and sites to infer the underlying parameters. For SNAs that fall within CNA regions, Canopy infers their temporal ordering and resolves their phase. When there are multiple evolutionary configurations consistent with the data, Canopy outputs all configurations along with their confidence assessment.
Calculate a set of corrected test statistics for cases when samples are not independent, such as when classification accuracy values are obtained over resamples or through k-fold cross-validation, as proposed by Nadeau and Bengio (2003) <doi:10.1023/A:1024068626366> and presented in Bouckaert and Frank (2004) <doi:10.1007/978-3-540-24775-3_3>.
This package provides tools for estimating censored Almost Ideal (AI) and Quadratic Almost Ideal (QUAI) demand systems using Maximum Likelihood Estimation (MLE). It includes functions for calculating demand share equations and the truncated log-likelihood function for a system of equations, incorporating demographic variables. The package is designed to handle censored data, where some observations may be zero due to non-purchase of certain goods. Package also contains a procedure to approximate demand elasticities numerically and estimate standard errors via Delta Method. It is particularly useful for applied researchers analyzing household consumption data.
Creation of interactive tables, listings and figures ('TLFs') and associated report for exploratory analysis of data in a clinical trial, e.g. for clinical oversight activities. Interactive figures include sunburst, treemap, scatterplot, line plot and barplot of counts data. Interactive tables include table of summary statistics (as counts of adverse events, enrollment table) and listings. Possibility to compare data (summary table or listing) across two data batches/sets. A clinical data review report is created via study-specific configuration files and template R Markdown reports contained in the package.
Composite likelihood approach is implemented to estimating statistical models for spatial ordinal and proportional data based on Feng et al. (2014) <doi:10.1002/env.2306>. Parameter estimates are identified by maximizing composite log-likelihood functions using the limited memory BFGS optimization algorithm with bounding constraints, while standard errors are obtained by estimating the Godambe information matrix.
Simulates parameterized single- and double-directional stem deformations in tree point clouds derived from terrestrial or mobile laser scanning, enabling the generation of realistic synthetic datasets for training and validating machine learning models in wood defect detection, quality assessment, and precision forestry. For more details see Pires (2025) <doi:10.54612/a.7hln0kr0ta>.